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Abstract: The paper aims to do a survey on the techniques used to implement implicit and explicit Runge – 

Kutta methods to approximate an initial value problem. This is helpful for the problem of high stiffness which 

appears in many applications, but it challenges a numerical approximation technique to solve. In fact, this 

problem can be solved by several approaches, such as the predictor-corrector approach, or an adaptive step-size 

by pair of different order methods. Numerical experiments prove the efficiency of these approaches. 
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I.  INTRODUCTION 
Let consider the ODE with initial condition 

𝑦′ = 𝑓 𝑡, 𝑦 , 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦 𝑎 = 𝛼.                                                    (1) 

A Runge-Kutta method of order 𝑝 is given by 

𝑤𝑛+1 = 𝑤𝑛 +  𝑏𝑖𝑘𝑖

𝑠

𝑖=1

𝑘𝑟 = ℎ𝑓  𝑡𝑛 + 𝑐𝑗ℎ, 𝑤𝑛 +  𝑎𝑗𝑟 𝑘𝑟

𝑠

𝑟=1

 , ∀𝑟 = 1,2, … , 𝑠,

 ∀𝑛, 0 ≤ 𝑛 ≤ 𝑁  2  

ℎ =
𝑏 − 𝑎

𝑁
, 𝑎 = 𝑡0 < 𝑡1 <. . . < 𝑡𝑁 = 𝑏, 𝑤𝑛 ≈ 𝑦 𝑡𝑛 , ∀1 ≤ 𝑛 ≤ 𝑁. 

The Butcher’s table ([2]) is 
𝑐1

𝑐2

⋮
𝑐𝑠

 

𝑎11 𝑎12

𝑎21 𝑎22

… 𝑎1𝑠

… 𝑎2𝑠

⋮ ⋮
𝑎𝑠1 𝑎𝑠2

⋱ ⋮
… 𝑎𝑠𝑠

 

 𝑏1 𝑏2 … 𝑏𝑠 

 
In Sections II and III below, we introduce two approaches for implementing implicit and explicit Runge-

Kutta method where matrix 𝐴 =  𝑎𝑖𝑗  1≤𝑖,𝑗≤𝑠
 in Butcher’s table is upper triangular or not. 

 

II.  PREDICTOR – CORRECTOR APPROACH 

The equivalent form of (2) in matrix block is given by 
𝑤𝑛+1 = 𝑤𝑛 + 𝐔𝐤

𝐤 = ℎ𝑭 𝑡𝑛𝟏 + ℎ𝐐, 𝑤𝑛𝟏 + 𝐴𝐤 
(3) 

where 

𝐔 =  𝑏1 , 𝑏2 , … , 𝑏𝑠 , 𝐐 =  𝑐1, 𝑐2 , … , 𝑐𝑠 
𝑇 ,

𝟏 =  1, … ,1 T , 𝐤 =  𝑘1, 𝑘2, … , 𝑘𝑠 
T ∈ ℝ𝑠 ,

𝑭 𝒛, 𝒖 = 𝑭  𝑧1, 𝑧2 , … , 𝑧𝑠 
𝑇 ,  𝑢1, 𝑢2, … , 𝑢𝑠 

𝑇 =  𝑓 𝑧1 , 𝑢1 , 𝑓 𝑧2 , 𝑢2 , … , 𝑓 𝑧𝑠 , 𝑢𝑠  
𝑇

.

 

 

The Newton method is a not bad option to formulate k in (3) assuming the differentiable of 𝑭. However, 

the cost of derivative computation is an obstacle of this approach. We then improve the performance by only 

solving k using the Newton method and then using the predictor-corrector approach toconstructk recurrently for 

other repeatation at the current time step 𝑡𝑛  as 

𝐤(𝑞+1) = ℎ𝑭 𝑡𝑛𝟏 + ℎ𝐐, 𝑤𝑛𝟏 + 𝐴𝐤(𝑞) , ∀𝑞 ≥ 0,               (4) 

 

This approach works properly since the sequence in (4) converges when 𝑭 is differentiable. For implicit 

Runge-Kutta method, the method (3) with s-stage and p-order has 𝑠 < 𝑝.  So it benefits the amount of 

computation. This helpsin reducing the round of error and saving time by an efficient computation. 

For illustrations, consider the following cases in which a class of implicit Runge-Kutta method formed 

by using the Gaussian quadrature in [3, 4]. 
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Case of 𝑠 = 2, 𝑝 = 4:The Butcher’s table is 

1

2
−

 3

6

1

2
+

 3

6

 

1

4

1

4
−

 3

6

1

4
+

 3

6

1

4

 

 

 

 

                                 5  

 1

2

1

2
 

 

Case of𝑠 = 3, 𝑝 = 6:The Butcher’s table is 

1

2
−

 15

10
1

2

1

2
+

 15

10

 

5

36

2

9
−

 15

15

5

36
−

 15

30

5

36
+

 15

24

2

9

5

36
−

 15

24

5

36
+

 15

30

2

9
+

 15

15

5

36

 

 

 

 

 6  

 5

18

4

9

5

18
 

 

The algorithm below shows the procedure step by step. 

ALGORITHM: Predictor-Corrector approach. 

 

Input:𝑭, 𝐐, 𝐔, 𝐴, 𝑎, 𝑏,the initial value 𝛼,and number of time-steps𝑁, the maximum iteration in the predictor- 

corrector process 𝑚𝑚𝑎𝑥. 
 

Output: the approximation 𝑤𝑛  for 0 ≤ 𝑛 ≤ 𝑁. 
Step 1. Set step size ℎ ≔ (𝑏 − 𝑎)/𝑁, and initiate 𝑛 = 0: Take 𝑡0 ≔ 𝑎, 𝑤0 ≔ 𝛼. 
 

Step 2.While 𝑛 ≤ 𝑁 do:  

Compute 

𝐵 ≔ 𝐼𝑠 − ℎ𝑭𝒖 𝑡𝑛𝟏 + ℎ𝐐, 𝑤𝑛𝟏 𝐴. 

𝑃 ≔ ℎ𝑭 𝑡𝑛𝟏 + ℎ𝐐, 𝑤𝑛𝟏 𝟏 + ℎ
2𝑭 𝑡𝑛𝟏 + ℎ𝐐, 𝑤𝑛𝟏 𝐔. 

 

Set 𝛉𝟏
 𝑛 

≔ 𝐤 𝑛 to be the solution k
(n)

of the system 𝐵𝐤(𝒏) = 𝑃. 
 

For 𝑖 from 1 to  𝑚𝑚𝑎𝑥 − 1 ,set𝛉i+1
(𝑛)

≔ ℎ𝑭 𝑡𝑛𝟏 + ℎ𝐐, 𝑤𝑛𝟏 + 𝐴𝛉i
(𝑛)

 . 

Set 𝑛 ≔ 𝑛 + 1, 𝑡𝑛 ≔ 𝑡𝑛 + ℎ, 𝑤𝑛 ≔ 𝑤𝑛 + 𝐔𝛉𝑚𝑚𝑎𝑥
 𝑛 

. 
 

Step 3. Get output   𝑡𝑛 , 𝑤𝑛  0≤𝑛≤𝑁 . 
 

In this algorithm, the Newton method performs the first step at each time step𝑡𝑛 , the predictor-corrector 

method then is applied in the steps follow to improve the exactness of the approximation at the current time 

step. This combination works properly and is efficient in reducing the computational cost and getting more and 

more accurate approximation. The proof of advantages for the implementation is shown in Numerical 

experiments below. Here, IRK6_PC and IRK4_PC are method of orders 6 and 4, respectively, for the predictor-

corrector approach. The comparison is made with methods the implicit Runge-Kutta or order 6, IRK6, and 

normal Runge-Kutta method of order 4, RK4, and order 6, RK6. The efficiency is shown in the performance of 

the method. 

 

Example 1([1]).The initial value problem 

𝑦′ =  
1

𝑡
− 40 𝑦 + 40𝑡2 + 𝑡, 𝑡 ∈  ln 2 , 5 , 𝑦 ln 2 =

ln 2

240
+ ln2 2.          

 

has the exact solution of the problem is 𝑦 = 𝑡2 + 𝑡𝑒−40𝑡 . The error at 𝑡𝑁 = 5 is shown in table below for 

each method. The stiffness is very high since the term 𝑡𝑒−40𝑡  having a very large negative coefficent in power. 

This causes challenge a usual method, especialy when the step-size is moderately small. In the table, we see 

tremendous error in calculation, such as method RK4 and RK6 even when the step size is very small, but the 

stable is clearer and clearer for the other methods, especially the class of the predictor-corrector methods.  
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IRK6_PC 

𝑁 = 10,30,40,70; 
𝑚𝑚𝑎𝑥 = 10 

IRK4_PC 

𝑁 = 10, 30,40,70; 
𝑚𝑚𝑎𝑥 = 10 

IRK6 

𝑁 = 10, 20,30,40,70; 
𝑚𝑚𝑎𝑥 = 10, 𝑡𝑜𝑙 = 0.001 

RK4 

𝑁 = 10, 30,40; 
 

RK6 

𝑁 = 10, 40,70; 
 

7.7 × 1033 , 
1.31 × 10−1, 

3.698 × 10−3, 
3.483 × 10−6 

2.35 × 1039 , 
5.12 × 10−1, 
1.62 × 10−2, 
1.964 × 10−5 

1.324 × 10−1, 
3.46 × 10−2, 

1.443 × 10−2, 
7.486 × 10−3, 
2.021 × 10−3 

2.143 × 1032 , 
1.167 × 1039, 
2.574 × 1030 , 
2.895 × 10−3 

3.34 × 1051 , 
2.97 × 1045 , 

2.915
× 10−2 

2.5𝑠, 4.9𝑠, 5.84𝑠, 9.21𝑠 2.47𝑠, 5.08𝑠, 5.8𝑠, 9.3𝑠 3.1𝑠, 4.3𝑠, 5.3𝑠, 6.3𝑠, 9.9𝑠 1.33𝑠, 1.4𝑠, 1.42𝑠, 1.43𝑠 1.2𝑠, 1.35𝑠, 1.36𝑠 

 

Exmple 2([2]). The initial value problem 

𝑦′ = −10𝑦 + 10 cos 𝑡 − sin 𝑡 , 𝑡 ∈  0,4 , 𝑦 0 = 2.         
 

The exact solution of the problem is 𝑦 = cos⁡(𝑡) + 𝑒−10𝑡 . The absolute error at 𝑡𝑁 = 4 is shown in table 

below for each method. This problem has a high stiffness since the term 𝑒−10𝑡  having a large negative coefficent 

in power. Similar to Example 1, result also shows that the efficiency in the class of the precdictor-corrector 

methods.  

 

IRK6_PC 

𝑁 = 10, 20,30,70; 
𝑚𝑚𝑎𝑥 = 10 

IRK4_PC 

𝑁 = 10, 20,30; 
𝑚𝑚𝑎𝑥 = 10 

IRK6 

𝑁 = 10, 20,30; 
𝑚𝑚𝑎𝑥 = 10, 𝑡𝑜𝑙
= 0.001 

RK4 

𝑁 = 10, 20,30; 
 

RK6 

𝑁 = 10, 20,30; 
 

1.004 × 10−2, 
1.538 × 10−6, 
3.801 × 10−9 

4.24 × 10−2, 
1.628 × 10−5, 
5.123 × 10−6 

3.972 × 10−2, 
7.104 × 10−3 

2.727 × 10−3 

9.517 × 106 , 
3.982 × 10−3, 
4.607 × 10−4 

1.275 × 1010 , 
3.065 × 10−4, 
6.712 × 10−4 

0.83𝑠, 1.16𝑠, 1.55𝑠 0.81𝑠, 1.18𝑠, 1.53𝑠 1.14𝑠, 1.37𝑠, 1.72𝑠 0.45𝑠, 0.41𝑠, 0.42𝑠 0.42𝑠, 0.44𝑠, 0.46𝑠 

 

Example 3([5]). Given the initial value problem 

𝑦′ =  𝑡 + 2𝑡3 𝑦3 − 𝑡𝑦, 𝑡 ∈  0,2 , 𝑦 0 = 1/3.      
 

The exact solution of the problem is 𝑦 =  3 + 2𝑡2 + 6𝑒𝑡2
 
−1/2

. The absolute error at 𝑡𝑁 = 2 is shown in 

table below for each method. The stiffness of the problem is not too small in comparing to that in two previous 

examples. However, the efficiency and the advantages still appear for the class of the predictor-corrector 

methods. 

 

IRK6_PC 

𝑁 = 10, 20,30,70; 
𝑀 = 10 

IRK4_PC 

𝑁 = 10, 20,30; 
𝑀 = 10 

IRK6 

𝑁 = 10, 20,30; 
𝑀 = 10, 𝑡𝑜𝑙
= 0.001 

RK4 

𝑁 = 10, 20,30; 
 

RK6 

𝑁 = 10, 20,30; 
 

1.915 × 10−9, 

2.978 × 10−11, 

2.612 × 10−12, 

1.6 × 10−14
 

1.82 × 10−7, 

1.064 × 10−8, 

2.075 × 10−9
 

1.464 × 10−3, 

3.628 × 10−4 

1.606 × 10−4
 

6.458 × 10−6, 

3.73 × 10−7, 

7.16 × 10−8
 

1.982 × 10−4, 

1.033 × 10−4, 

6.991 × 10−5
 

0.92𝑠 , 1.27𝑠 , 1.59𝑠 , 9.1𝑠  0.88𝑠 , 1.25𝑠 , 1.6𝑠  0.98𝑠 , 1.33𝑠 , 1.69𝑠  0.48𝑠 , 0.5𝑠 , 0.51𝑠  1.52𝑠 , 1.58𝑠 , 1.6𝑠  

 

III.  ADAPTIVE APPROACH 
We consider a Runge - Kutta method of order 1: 

𝑤1 = 𝑤0 + 𝑏 1ℎ𝐹 1,                (7) 

Where 𝑤0 = 𝛼 , 𝐹 1 = 𝑓  𝑡 0, 𝑤0 , and the coefficient 𝑏 1 is selected appropriately. Another Runge -Kutta 

method of order 2 is applied 

𝑤1
∗ = 𝑤0 + ℎ  𝑏 1

∗𝐹 1 + 𝑏 2
∗𝐹 2 ,           8  

Where 𝐹 2 = 𝑓  𝑡 0 + 𝑐 2ℎ, 𝑤0 + 𝑎 2ℎ , and coefficients 𝑏 1
∗, 𝑏 2

∗, 𝑐 2, 𝑎 2 are selected such that (7) and (8) 

are identical to their Taylor’s approximation of the corresponding the orders 1 and 2. We have 

𝑦  𝑡 0 + ℎ = 𝑤0 + ℎ𝑓  𝑡 0, 𝑤0 +
ℎ

2

2
𝑓 ′ 𝑡 0, 𝑤0 +

ℎ
3

6
𝑓 ′′ 𝜉 , 𝑦  𝜉   , 𝜉 ∈  𝑡 0, 𝑡 0 + ℎ , 

𝑓 ′ 𝑡 0, 𝑤0 = 𝑓 𝑡  𝑡 0, 𝑤0 + 𝑓 𝑦  𝑡 0, 𝑤0 𝑦
′ 𝑡 0 = 𝑓 𝑡  𝑡 0, 𝑤0 + 𝑓 𝑦  𝑡 0, 𝑤0 𝑓  𝑡 0, 𝑤0 . 
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By Taylor’s expansion up to order 2, 

𝐹 2 = 𝑓  𝑡 0 + 𝑐 2ℎ, 𝑤0 + 𝑎 2ℎ = 𝑓  𝑡 0, 𝑤0 + ℎ 𝑐 2𝑓 𝑡  𝑡 0, 𝑤0 + 𝑎 2𝑓 𝑦  𝑡 0, 𝑤0  + 𝑜 (ℎ2). 

So, 𝑤1
∗ = 𝑤0 + ℎ 𝑏 1

∗ + 𝑏 2
∗ 𝑓  𝑡 0, 𝑤0 + ℎ

2𝑏 2
∗ 𝑐 2𝑓 𝑥  𝑡 0, 𝑤0 + 𝑎 2𝑓 𝑦  𝑡 0, 𝑤0  .              (9) 

Identifying (8) and (9) yields 

 
 
 

 
 

𝑏 1
∗ + 𝑏 2

∗ = 1

𝑏 2
∗𝑐 2 =

1

2

𝑏 2
∗𝑎 2 =

1

2
𝑓  𝑡 0, 𝑦 0 

  

 

This system has many solutions for 𝑏 1
∗, 𝑏 2

∗, 𝑐 2, and 𝑎 2. Each provides us a method in the class we aims 

to construct. The local truncation error of (7) and (8), respectively, are 

𝜏 1 ℎ =
𝑦  𝑡 0 + ℎ − 𝑤1

ℎ
= 𝑂 ℎ , 

𝜏 1
∗ ℎ =

𝑦  𝑡 0 + ℎ − 𝑤1
∗

ℎ
= 𝑂 ℎ2 . 

So, 

𝜏 1 ℎ =  𝑦  𝑡 0 + ℎ − 𝑤1 /ℎ =
1

ℎ
[(𝑦  𝑡 0 + ℎ − 𝑤1

∗) +  −𝑤1 + 𝑤1
∗ ] = 𝜏 1

∗ ℎ +
1

ℎ
 𝑤1

∗ − 𝑤1 . 

 

Since 𝜏 1
∗ ℎ  has a high order than 𝜏 1 ℎ , 𝜏 1 ℎ ≈ (𝑤1

∗ − 𝑤1)/ℎ. 
 There is a constant 𝑀 such that 𝜏 1 ℎ ≈ 𝑀ℎ. If the step size is adjusted to 𝑞 ℎ, 𝑞 ≤ 1,then 

𝜏 1 𝑞 ℎ ≈ 𝑀 𝑞 ℎ ≈
𝑞

ℎ
 𝑤1

∗ − 𝑤1 . 

 

If we require a bound of error 𝜀 > 0 that  𝜏 1 ℎ  ≤ 𝜀 ,  the coefficient for adjustment the step size is 

𝑞 ≤
𝜀 ℎ

 𝑤1
∗ − 𝑤1 

.  

The following algorithm describes this procedure of the method. 

ALGORITHM: Adaptive step size approach 

 

Input: 𝑓 , 𝑎 , 𝑏 , 𝛼 , 𝑁, 𝜀 , ℎ𝑚𝑖𝑛  (minimum step size allow), and ℎ𝑚𝑎𝑥  (maximum step size allow). 

 

Output: Sequence of approximation   𝑡 𝑛 , 𝑤𝑛   0≤𝑛 ≤𝑁 . 
 

Step 1. Initiate the procedure. 

𝑛 ≔ 0, 𝑡 𝑛 ≔ 𝑎 ; 𝑤𝑛 ≔ 𝛼, ℎ = ℎ𝑚𝑎𝑥 . 
OUTPUT  𝑡 𝑛 , 𝑤𝑛 , ℎ . 
 

Step 2.Repeat steps 3-9 until a break. 

 

Step 3.𝐹 1 ≔ ℎ𝑓  𝑡 𝑛 , 𝑤𝑛  ; 
 𝐹 2 ≔ ℎ𝑓  𝑡 𝑛 + ℎ, 𝑤𝑛 + 𝐹 1 ; 
 

Step 4.𝑅 : =
1

ℎ
 𝐹 1 − 𝐹 2 . 

 

Step 5. If 𝑅 < 𝜀  then  

 𝑛 ≔ 𝑛 + 1; 
 𝑡 𝑛 ≔ 𝑡 𝑛 + ℎ; 

𝑤𝑛 ≔ 𝑤𝑛 + 𝐹 1; 
 OUTPUT  𝑡 𝑛 , 𝑤𝑛 , ℎ . 
 

Step 6.𝑞 ≔ 0.5𝜀 /𝑅 . 
 

Step 7.If 𝑞 ≤ 0.1 then ℎ ≔ 0.1ℎ; 

  elseif 𝑞 ≥ 4 then ℎ ≔ 4ℎ; 

  else ℎ ≔ 𝑞 ℎ; 
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Step 8.If ℎ > ℎ𝑚𝑎𝑥  then ℎ ≔ ℎ𝑚𝑎𝑥 ; 
 

Step 9.If 𝑥 ≥ 𝑏  then break; 

  elseif 𝑥 + ℎ > 𝑏  then ℎ ≔ 𝑏 − 𝑥 ; 
  elseif ℎ < ℎ𝑚𝑖𝑛  then  

  OUTPUT(“Minimum h exceeded. Procedure fails!”) 

  Break. 

STOP. 

Adaptive time step method produces an approximation with very small error but with low cost of 

computation. The efficiency of the method is proved in the numerical experiment below. 

 

Example 4([6]).Consider the IVP: 𝑦 ′ = 𝑦 − 𝑥 2 + 1, 0 ≤ 𝑥 ≤ 1.5, 𝑦  0 = 0.5. 
Take the tolerance 𝜀 = 0.06, and ℎ𝑚𝑎𝑥 = 0.25, ℎ𝑚𝑖𝑛 = 0.001. The exact solution of the IVP is 

𝑦  𝑥  =  𝑥 + 1 2 −
𝑒 𝑥

2
. 

𝑥 𝑖  𝑦  𝑥 𝑖   ℎ𝑖  
𝑤𝑖  by Euler 

method 

Absolute Error 

 𝑦  𝑥 𝑖  − 𝑤𝑖   
Estimate 𝑅 𝑖  of 

𝜏 𝑖 +1 ℎ  

0.0000  0.500000000 0.250000000 0.500000000  0.000000000  0.000000000 

0.0538  0.582794479 0.053760000 0.580640000  0.002154479  0.038874931 

0.1002  0.657785768 0.046465317 0.653950647  0.003835121  0.033077835 

0.1474  0.737159458 0.047198815 0.731541041 0.005618417  0.032950817 

0.1956  0.821355070 0.048128707 0.813831849  0.007523220  0.032891885 

0.2447  0.910691785 0.049164849 0.901128510  0.009563276  0.032825413 

0.2950  1.005543717 0.050325000 0.993789002  0.011754715  0.032748526 

0.3467  1.106357364 0.051633470 1.092240543  0.014116821  0.032658685 

0.3998  1.213672443 0.053121691 1.196999503  0.016672940  0.032552499 

0.4546  1.328151023 0.054831085 1.308699260  0.019451763  0.032425305 

0.5114  1.450619466 0.056817490 1.428130294  0.022489172  0.032270529 

0.5706  1.582130720 0.059158240 1.556299747  0.025830973  0.032078608 

0.6326  1.724060435 0.061963938 1.694523328  0.029537107  0.031835113 

0.6980  1.878262202 0.065399118 1.844573775  0.033688427  0.031517273 

0.7677  2.047332893 0.069720829 2.008934690  0.038398203  0.031087073 

0.8430  2.235100017 0.075356719 2.191266978  0.043833039  0.030476336 

0.9261  2.447605733 0.083080387 2.397351338  0.050254395  0.029550478 

1.0206  2.695371328 0.094465512 2.637259976  0.058111352  0.028005519 

1.1339  2.999727117 0.113336275 2.931441691  0.068285426  0.024998301 

1.2863  3.417376961 0.152334306 3.334464986  0.082911975  0.017172727 

1.5000  4.009155465 0.213738253 3.907282585  0.101872880  0.011356559 

 

The result shows the errors of the approximation obtained from the method with the time-step changes 

adaptively to fulfill the tolerance. The error is small and could prove the correction of the method.  

 

IV.  CONCLUSION 
Two approaches introduced in this paper are effective and advantageous, especially in treating the 

problem with high stiffness. The benefits from class of implicit Runge-Kutta techniques are developed and 

improved with these approaches. Numerical experiments show that these approaches work properly and 

efficient. They also represent the advance of the predictor-corrector class of method to highly stiff problems. 
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