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Abstract: This paper presents the behavior of traveling waves in a single-phase transmission line. To 
this end, the reflected and transmitted voltages at the connection terminals between the source and the 
line, and between the line and the load, that is, points of discontinuity, are analyzed. The reflected and 
refracted voltages and currents at junctions and terminations of the lines and cables are calculated by 
the use of reflection and refraction coefficients. As the travelling time of the transient wave will 
increase, more number of reflected and transmitted components will be formed. Validation of the 
results and calculations performed was carried out using the ATP/EMTP software, considering the 
same system under analysis.  
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1. INTRODUCTION 

It is well-known that high frequency transient signals will be generated whenever disturbances occur, 
where the power network will lose its steady state condition, resulting in a large number of cases with load 
drops [1].According to Travelling Waves (TW) theory, any disturbance or a sudden change in an overhead 
transmission line or underground cable will generate both forward and backward TWs signals propagating away 
from the disturbance point towards both busbars [2]. 

The theory of traveling waves (TWs) has gained importance year after year in power transmission grids 
applications, such as in TW-based protection and fault location algorithms [3]. The principle of TWs 
propagation in transmission lines has been known for a long time [4], but only in recent years, with the 
advancement of analog-to-digital converter technology, digital disturbance recorders (RDPs) and protection 
relays have become available of sufficient sampling rates for the application of algorithms based on TW theory 
[5]. 

The behavior of the traveling waves is strictly depending on the reflection and refraction coefficients in 
the sending and receiving nodes, in turn these coefficients are depending on the transmission network’s 
parameters, such as the characteristic impedance and the impedance of the sending and receiving ends [6]. 

Traveling waves are electromagnetic impulses of high speed, current frequency and voltage, which 
originate when adisturbance occurs. For example, when a failure occurs in a transmission line, these waves will 
propagate towards both sending and receiving ends, until they reach a discontinuity or equipment in a 
substation, such as a transformer or another line with different characteristics, in the which are divided into 
transmitted wave and reflected wave. This phenomenon is represented by Bewley’s Lattice diagrams, 
considered the most used tool [7]. 

Bewley’s Lattice diagram is a graphical method that has been widely used for determining value of a TW 
in transient analysis [2]. Bewley’s Lattice diagram is a pictorial method devised by Bewley, which shows at a 
glance the position and direction of motion of every incident, reflected, and transmitted wave on the system at 
every instant of time [1]. Further, these signals will be reflected and refracted at the points of discontinuity, i.e., 
fault point and busbars, until they are attenuated to a negligible value. 

The salient feature of the tool is that it keeps the track for successive reflections and transmissions at 
various junctions for each point on them which otherwise is a quite difficult job in itself [8]. 

Bewley’s Lattice diagram has the following properties [1]: 
a) all waves travel downhill, because time always increases. 
b) the position of any wave at any time can be deduced directly from the diagram. 
c) the total potential at any point, at any instant of time is the superposition of all waves which have 

arrived at that point up until that instant of time, displaced in position from each other by intervals 
equal to the difference in their time of arrival. 

d) The history of the wave is easily traced. It is possible to find where it came from and just what 
other waves went into its composition. 

e) attenuation is included, so that the wave arriving at the far end of a line corresponds to the value 
entering multiplied by the attenuation factor of the line. 
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Applicability of this method has been well explored in areas like study of electromagnetic transients [9], 
fault location in distributed systems [10]. The detailed literature survey was carried out in [1]. 

The importance of analyzing traveling waves generated by disturbances such as faults or lightning in 
transmission lines is that they can be used as criteria for their detection, location and subsequent release [11]. 

Fault location using fault transients and based on traveling waves theory has been successfully applied as 
a unit or double ended scheme on extra high-voltage (EHV) transmission lines. A single end fault location 
scheme is also possible when the current and voltage transients are available at the relaying point. A single 
ended fault location scheme has its origin in offline traveling-wave fault locators, which, inject a signal and fault 
locate from the time it takes the signal to reflect back from the fault location [1].  

The basic principle of this method can be well explained using Bewley’s Lattice diagram as illustrated in 
Fig. 1 [6]. 

 
Figure 1. Representation of the Bewley’s Lattice diagram when a fault occurs in the middle of a transmission 

line [6] 
 

The Bewley’s Lattice diagram developed by L. V. Bewley [7] organizes the reflections that occur during 
transients in the transmission line. For the Bewley’s Lattice diagram, the vertical scale represents time t in units 
of s and the diagonal lines represent traveling waves. Each reflection is determined by multiplying the incident 
wave arriving at one end by the reflection coefficient at that end, as illustrated in Fig. 1. 

The voltage u(x,t) at any point x and t on the diagram is determined by adding all the terms directly at 
that point [12]. 

To exemplify what was said previously [6], Fig. 1 supposes a disturbance at a distance x in a 
transmission line, where it can be seen that the signals seen from terminal A allow obtaining information about 
the phenomenon of traveling waves. Furthermore, it is possible to observe in Fig. 1, when the disturbance occurs 
at the intermediate point of the line, a voltage wave Va propagates towards terminal A, covering a distance in a 
time ta1 and another voltage wave Vb propagates in towards terminal B, traveling a distance db in time tb1, when 
it reaches terminal B it is reflected and returns to the point where the disturbance is located. At this point, this 
voltage wave is reflected and returns at time tb2 and another wave is refracted and heads towards terminal A at 
time ta2 and so on. 

The waves reaches both the busbars after a certain time delay which is actually equal to the time required 
by the wave to travel the distance with speed of 3 x 108 m/s i.e. speed of light. Upon reaching the busbar, some 
part of the wave is transmitted to the other medium and rest is reflected back to the same medium. The value is 
decided by the impedance value of both mediums present on both side of concerned busbar. The same pattern 
gets repeated when this new generated waves represented subsequent arrows reaches again to the busbars [1]. 
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These travelling waves are generated by the fault contain abundant fault information such as fault 
direction, fault location, time of fault occurring and so on [13][14] and they can be used as the fault detection 
criteria. 

 
2. TRANSITIONAL REGIME IN TRANSMISSION LINES 

2.1 Propagation of traveling waves in transmission lines 

Understanding the propagation of TWs in transmission systems [3] begins with modeling transmission 
lines using distributed parameters. In fact, it is from this modeling that it becomes possible to simulate and 
understand the phenomena transients arising from the propagation of TWs in transmission lines [15]. 

In Fig. 2, the incremental equivalent circuit is presented of a LT, where ∆x represents the length of the 
circuit incremental, R the resistance, L the inductance, G the conductance and C the capacitance of the 
incremental circuit, all representing the concept of parameters per unit length [3]. 

 

 
Figure 2. Equivalent incremental circuit of an transmission line segment [3] 

 
Assuming sinusoidal steady state, the transmission line equations associated with a single conductor can 

be written in the phasor domain (or frequency) such as: 
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Deriving the previous equations with respect to x, is obtain the following pair of equations: 
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For a single-phase transmission line Z(ω)Y(ω) = Y(ω)Z(ω). Soon: 
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The variable γ is known as constant or programming coefficient. This coefficient can also be expressed 

as follows: 
 

Z Y jγ α β= ⋅ = +  (8) 

 
The solution to equations (5) and (6) has the form: 

 

( ) 1 2, x xV x t V e V eγ γ−= +  (9) 

 

( ) 1 2, x xI x t I e I eγ γ−= +  (10) 

 
The equations (9) and (10) represent the propagation of regressive and progressive TWs in LTs after a 

sudden voltage variation in step form. This phenomenon is the same as that observed during faults or switching 
maneuvers, which launch TWs that propagate in the system with a speed defined based on the LT parameters. 
Based on this concept, it is noted that TWs have a simultaneous variation in space and time, a fact that motivates 
the use of Lattice diagrams in study of the propagation of TWs in LTs. In fact, this type of diagram is two-
dimensional, so it makes use of two axes orthogonals that represent time and space. This way, it becomes 
possible to evaluate in detail the spread of TWs in LTs, facilitating the understanding of transients typically 
observed in transmission systems [3]. 

Note that it is possible to determine a relationship between the constants V1 and I1, V2 and I2. Replacing 
(10) in (1): 
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Deriving equation (9) as a function of x: 
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Replacing (12) into (11): 
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However, the characteristic admission is given by: 
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Therefore, the characteristic impedance will be: 
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2.2 Reflection and transmission of traveling waves 

Both the polarity and the amplitude of a wave measured at a given terminal are related to the reflection 
and transmission coefficients at measurement points of the monitored system, which are represented in this 
work by the variables Γ and T, respectively [3]. 

To understand the behavior of traveling waves in transmission lines, considering the application of the 
Laplace Transform, it is necessary to carry out the study of electrical circuits for a transmission line and apply 
Kirchhoff's laws. In Fig. 3, a lossless transmission line is illustrated, which consists of one phase and two wires, 
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of length l and a load impedance ZR(s). In addition, a Thévenin impedance ZS(s) is observed in the sending node 
and a characteristic impedance ZC associated with the line. This lossless line assumption is widely used in power 
systems for studies of transients in transmission lines. In addition, the conditions for the propagation study are 
summarized, when a short circuit and an open circuit occur in the parameter transmission line distributed [6]. 
 

 
Figure 3. Transmission line in the Laplace domain [6] 

 
 

According to [6] the equations that describe the behavior of the lossless transmission line with distributed 
parameters are: 
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Where ux(x, t) and ix(x, t) are the partial derivatives with respect to x of the voltage and current 

respectively, ut(x, t), and it(x, t) are the partial derivatives with respect to t of the voltage. on and current 
respectively and L and C are the inductance and capacitance of the transmission line. Equations (16) and (17) 
are reduced to the following voltage traveling wave equation [6]. 
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As indicated by, considering the application of the Laplace Transform, it is assumed that for the solution 
of equation (18) the initial conditions are equal to zero, so the general solution is as [6]: 
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However, when the initial conditions are different from zero, according to the general solution of (18) in 

the Laplace domain has the form [6]: 

( ) ( ) ( ) ( ) ( )
0

1
, ,0 ,0

2

s s
x xs s v vx x x

v v
t

e e
V x s A s e B s e sV y V y dy

sV

− −
−

 
− = + −  +    

 
 

  (20) 

The result is obtained [6]: 
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ΓS(s) and ΓR(s) are the reflection coefficients at the sending and receiving nodes, respectively [6]. The 

Table 1 presents the reflection coefficients and transmission coefficients for voltage and current considering the 
system in Fig. 3. 
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Table 1 Expressions for reflection and transmission coefficients 
 Reflection Coefficients Transmission Coefficients 
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3. APLICATION OF BEWLEY’S LATTICE DIAGRAM IN A SINGLE-PHASE 

TRANSMISSION LINE 
The transmission line analyzed is single-phase and its conductors are positioned at a height of 10 meters, 

the radius of the conductors is 0.005 meters and the impedance is equal to 497.6 ohms. Other information is 
presented in Fig 4. 

 

 
Figure 4. Single-phase transmission line 

 
The value of the incident wave (vICD) and transit time (τ) are 943.13V and 1µs, respectively. Considering 

the electrical system under study, voltages at nodes k and m were obtained from the reflection and transmission 
coefficients indicated in Table 2. 

 
Table 2 Expressions for reflection and transmission coefficients 

Time Node k Node m 

0τ vICD = vICDk1 = 943.13 V  

1τ  
vTm1 = 1259.6 V 
vΓm1 = 316.42 V 

2τ 
vTk2 = 35.98 V 

vΓk2 = - 280.44 V 
 

3τ  
vTm2 = - 374.53 V 
vΓm2 = - 94.09 V 

4τ 
vTk3 = - 10.70 V 
vΓk3 = 83.39 V 

 

5τ  
vTm3 = 111.37 V 
vΓm3 = 27.98 V 

6τ 
vTk4 = 3.18 V 

vΓk4 = - 24.80 V 
 

7τ  
vTm4 = - 33.12 V 
vΓm4 = - 8.32 V 

8τ 
vTk5 = - 0.95 V 
vΓk5 = 7.37 V 

 

9τ  
vTm5 = 9.84 V 
vΓm5 = 2.47 V 

10τ 
vTk6 = 0.28 V 

vΓk6 = - 2.19 V 
 

11τ  
vTm6 = - 2.92 V 
vΓm6 = - 0.73 V 

 
In Fig. 5, the Bewley’s Lattice diagram is represented. 
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Figure 5. Bewley’s Lattice diagram showing reflections and transmissions in single-phase transmission line 

 
Fig. 6, Fig.7 and Fig. 8 were obtained considering the same electrical system implemented in 

ATP/EMTP, thus validating the values obtained through calculations and equations. 
 

 
(a) 

 
(b) 

Figure 6. Voltages waves (vΓ and vT): (a) t = 0τ; (b) t = 3τ 
 



International Journal of Latest Engineering and Management Research (IJLEMR) 
ISSN: 2455-4847  
www.ijlemr.com || Volume 09 – Issue 03 || March 2024 || PP. 09-17 

www.ijlemr.com                                                         16 | Page 

 
(a) 

 
(b) 

Figure 7. Voltages waves (vΓ and vT): (a) t = 4τ; (b) t = 7τ 
 
 

 
(a) 

 
(b) 

Figure 8. Voltages waves (vΓ and vT): (a) t = 8τ; (b) t = 11τ 

 

4. CONCLUSION 
This work evaluated the application of the Bewley’s Lattice diagram in a single-phase transmission line. 

It is important to highlight that to use the diagram, the reflection and transmission coefficients of a line of 
distributed parameters were mathematically determined, considering a Laplacian solution of the universal line 
model. 

To evaluate the behavior of traveling waves in a single-phase electrical system, the reflected and 
transmitted voltages in this system were calculated, and graphic representations of these waves were made using 
the Bewley’s Lattice diagram. To validate the calculations and results, general equations were obtained that 
describe the behavior of traveling waves in the system under study. Later, system simulations were carried out 
in the ATP/EMTP software and the same results were found, in addition to the representation of the voltage 
wave. It is concluded that the work presented satisfactory and adequate results for the study carried out. 

Furthermore, it is clear, through the literature review, that the Bewley’s Lattice diagram is being 
implemented in the protection of transmission lines that use algorithms based on traveling waves. 
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