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Abstract: Due to the massive economic and medical costs associated with infectious diseases, the World 

Health Organization’s announcement of the global pandemic outbreak of the coronavirus COVID-19 has 

become one of the most concerning event in human history. The novel Covid-19, SARS-COV2, a seriously 

harmful infection that has made COVID-19 a lethal illness, an infection that target the human respiratory system 

is currently causing recurrent flare-ups of a Covid infection that the world is currently battling. Covid-19 

specifically targets the human respiratory system. We are prepared to research the effects of carriers on the 

transmission dynamics of the Covid-19 disease by simulating the influence of carriers. By determining the 

positivity and boundedness of the realistic region for equilibrium, the analysis is carried out. Additionally, we 

ascertain the prerequisites that ensure its existence as well as the fundamental Reproduction number. Graphs 

were used to show and illustrate how regulating the dynamics affected the dynamics. The transmission models 

and regulation of Covid are explained in this paper. After using the SEIR model, we established the expectation 

that Covid-19 would persist but that transition could be managed. Therefore, our model predicts that while 

Covid won’t be completely eradicated, the factors affecting its transmission will aid in illness forecasting and 

management. 
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1. Introduction 
For some infectious or contagious diseases, there are people who can transfer their disease yet won't 

show any side effects. These arrangements of individuals are called carriers and they play a crucial role in the 

spread of the infection. We can arrange carriers in two unique sorts. Hereditary transporters have the disease on 

their latent qualities. They can just exchange the sickness to their children and are not infectious. The significant 

piece of our review centers on irresistible illness transporters. Due to the massive economic and medical costs 

associated with infectious diseases, the World Health Organization’s announcement of the global pandemic 

outbreak of the coronavirus COVID-19 has become one of the most concerning event in human history. The 

novel Covid-19, SARS-COV2, a seriously harmful infection that has made COVID-19 a lethal illness, an 

infection that target the human respiratory system is currently causing recurrent flare-ups of a Covid infection 

that the world is currently battling. Covid-19 specifically targets the human respiratory system.  

Viral illness transmission associated to medical services is a serious problem with large financial costs 

and a potential death toll. In clinics all throughout the world, contaminations with the highly contagious SARS-

CoV-2 infection have been shown to predominate. The number of patients crammed into a medical clinic bayou 

may have an impact on the spread of sickness. In this review, we analyze a numerical demonstrating and 

computational method to deal with, represent the transmission of SARSCoV-2 among hospitalized patients in 

order to examine this viewpoint. Understanding the mechanism of the diseases spread in the human population, 

such as COVID-19, requires the use of mathematical modeling. These models produce insights into the 

mechanisms of infectious disease transmission and help politicians and health professionals stop its wide spread. 

Over the past century, there has been a lot of research done on mathematical models of infectious disease 

dynamics [1]-[4]. These models are based on the SIR model. 

To investigate and forecast the spread of Covid-19 in the French overseas department of Mayotte, 

Manou-Abi et al. [5] suggested a modified SEIR model. The dynamics of the pandemic may be understood and 

predicted using these models, which is highly intriguing. Studying the consequences of the various attenuation 

measurements through simulation is also crucial [6, 7].  
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As described by Safaret al. [8], alongside efforts to identify trustworthy resources, such as coronavirus 

vaccinations, the effects of the so-called non-pharmaceutical tactics are not insignificant [9] and [10]. We 

identify containment, isolation of proven cases, and mitigation by the use of masks and barrier gestures among 

these non-pharmaceutical approaches. The effects of non-pharmaceutical interventions on the spread of the 

illness are the subject of this essay. The reproduction value, which gauges a virus’s ability for transmission, 

serves as the foundation for regulating the spread of viruses. When an infection infects less than one person and 

the speed of the disease is expected to stop, the value for spread differs from one virus to another (for example, 

value for influenza spread [11]). However, there is still limited information about the transmission potential of 

infectious diseases [12]-[14], and more theoretical work is required to connect the patterns of an epidemic. 

Several other authours who have made significant contributions includes but not limited to [15]-[22]In the 

current study, we revisit the work of Ebraheemet al. [23], modified the SIR model to include the effects of 

containment measures, and multiplied tests on the values of the basic reproduction number as well as latency 

time constants, which produced a remarkable accurate estimate of the real-time data for several countries. 

 

2. Epidemic Model with Asymptomatic Carrier 
The total human population at time t, denoted by 𝑁ℎ(𝑡), is split into a mutually exclusive sub-populations 

of susceptible humans (𝑆(𝑡)), Quarantine on exposed humans (𝑄(𝑡)), asymptomatic infectious humans (𝐴(𝑡)), 

symptomatic infectious humans (𝐼(𝑡)), detected infectious humans via testing (and are isolated and in some 

form of hospitalization for prompt treatment) (𝐼𝐷(𝑡)) and recovered humans (𝑅(𝑡)). We assume that those in the 

𝐼𝐷are completely isolated and do not come in contact with the general population. 

 
Figure 1: Schematic diagram of the model 

 

Consider the interaction within the community as shown in the compartmental block shown in Figure 1, 

taking all the subclasses enumerated above into consideration, we assume the following: 

● The migration rate to the community increases the total population  
● Recovered population could still become susceptible 
● Susceptible could become Asymptomatic, quarantine or symptomatic infectious 
● Asymptomatic class could be quarantine, recovered, symptomatically-infectious humans or detected 

infectious humans, 
● symptomatically-infectious humans could be quarantine, recovered or detected infectious humans, 
● Detected infectious humans could recover or die due to the disease. 
● We also assume that demographic parameters including births and natural deaths are excluded due to 

dynamics of an epidemic that is occurring within 1 – 14 days. 
 

With the above assumptions, the model for COVID-19 transmission dynamics in a general population is 

given by the following system of deterministic non-linear differential equations given as 
𝑑𝑆

𝑑𝑡
 = 𝛼 − 𝜆 1 −  𝛿  1 −  𝜖 𝑆 +  1 − 𝜑 𝛽𝑅𝑅                          

𝑑𝐸

𝑑𝑡
 = 𝜆 1 −  𝛿  1 −  𝜖 𝑆 − 𝜌 −  𝜍 + 𝜈 + 𝜋 + 𝜅 𝐸 + 𝜑𝛽𝑅𝑅 
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𝑑𝑄

𝑑𝑡
 = 𝜋𝐸 + 𝜏𝐴 + 𝜂𝐼 −  𝛾𝑘 + 𝑑𝑄 𝑄                

𝑑𝐴

𝑑𝑡
 =  𝜈𝐸 −   𝜃 +  𝛾𝑎 + 𝜇 + 𝜏 + 𝑑𝐴 𝐴               

𝑑𝐼

𝑑𝑡
 =  𝜍𝐸 −   𝜓 +  𝛾𝑜  + 𝜂 + 𝑑𝐼 𝐼 + 𝜇𝐴               

𝑑𝐼𝑑
𝑑𝑡

 =  𝜃𝐴 +  𝜓𝐼 −  𝛾𝑖  +  𝑑𝐼𝐷  𝐼𝐷 + 𝜅𝐸               

𝑑𝑅

𝑑𝑡
 =  𝛾𝑖𝐼𝐷  +  𝛾𝑎𝐴 +  𝛾𝑜𝐼 + 𝛾𝑘𝑄 − 𝛽𝑅𝑅               

 𝑆 0 = 𝑆0, 𝐸 0 = 𝐸0 , 𝑄 0 = 𝑄0 , 𝐴 0 = 𝐴0, 𝐼 0 = 𝐼0 ,   𝐼𝑑  0 = 𝐼𝑑 0
,   𝑅 0 = 𝑅0

.

            (1) 

It is imperative to state that, in the setting being considered in this work, the strict adoption of the use of 

face mask was being promoted well into the outbreaks. 

 

3. Analysis of the Model 

3.1 Total Population 
The total population N susceptible(𝑆), Infected carriers (𝐼𝑐 ), the symptomatically infected (𝐼) and those 

removed (𝑅) from the population either by death, isolation or recovery from the disease etc. So than we have  

𝑁 =  𝑆 +  𝑄 +  𝐸 +  𝐴 + 𝐼 +  𝐼𝐷   +  𝑅                                                                                        (2) 

Thus the total human population at time t, denoted by𝑁ℎ(𝑡), is obtained by adding the number of 

susceptible humans (𝑆(𝑡)), Quarantine on exposed humans (𝑄(𝑡)), asymptomatic infectious humans (𝐴(𝑡)), 

symptomatic infectious humans (𝐼(𝑡)), detected infectious humans via testing (𝐼𝐷(𝑡)) and recovered humans 

(𝑅(𝑡) from the disease). Thus we have,  

𝑁ℎ 𝑡 =  𝑆 𝑡 + 𝐸 𝑡 +  𝑄 𝑡 +  𝐴 𝑡 +  𝐼 𝑡 + 𝐼𝐷 𝑡 +  𝑅 𝑡 .                                                (3) 

And so adding equations in the system (1), then we have 

𝑁ℎ
′  𝑡 =  𝑆 ′ 𝑡 + 𝐸′ 𝑡 +  𝑄′ 𝑡 + 𝐴′ 𝑡 + 𝐼′ 𝑡 +  𝐼𝐷

′  𝑡 +  𝑅′ 𝑡  

  = 𝛼 − 𝜆 1 −  𝛿  1 −  𝜖 𝑆 +  1 − 𝜑 𝛽𝑅𝑅 + 𝜆 1 −  𝛿  1 −  𝜖 𝑆 −  𝜍 + 𝜋 + 𝜅 𝐸 + 𝜑𝛽𝑅𝑅 + 𝜋𝐸 + 𝜏𝐴 + 𝜂𝐼

−  𝛾𝑘 + 𝜅 𝑄 + 𝜈𝜍𝐸 −   𝜃 +  𝛾𝑎 + 𝜇 + 𝜏 + 𝜅 𝐴 +  1 − 𝜈 𝜍𝐸 −  𝜓 +  𝛾𝑜  + 𝜂 + 𝜅 𝐼 + 𝜇𝐴

+  𝜃𝐴 +  𝜓𝐼 −   𝛾𝑖  +  𝜅 𝐼𝐷 + 𝛾𝑖𝐼𝐷  +  𝛾𝑎𝐴 +  𝛾𝑜𝐼 + 𝛾𝑘𝑄 − 𝛽𝑅𝑅 

= 𝜌 − 𝑑𝐸𝐸 − 𝑑𝑠𝐴 − 𝑑𝑄𝑄 −   𝛿𝐼𝐷 − 𝑑𝐼𝐼 − 𝑑𝑅𝑅                                                                      (4) 

Letting 𝜙 = {𝑑𝐸 , 𝑑𝐴 , 𝑑𝑄 , 𝑑𝐷 , 𝑑𝐼 , 𝑑𝑅}, we have 

𝑁ℎ
′  𝑡 ≤  − 𝑆 + 𝐸 + 𝑄 + 𝐴 + 𝐼 + 𝐼𝑑 + 𝑅 𝜙                                                                            (5) 

and then equating 𝑁ℎ
′ to 0 since both 𝑆 ′ , 𝐸′ , 𝑄′ , 𝐴′ , 𝐼′ , 𝐼𝑑

′ and𝑅′all approach 0 as 𝑡 ⟶ ∞, then 

𝑁ℎ
′ ≤ −𝑁ℎ𝜙  

Which gives 

                                                                      𝑁ℎ ≤ 𝑁ℎ 0 𝑒−∅𝑡                                                           (6)  

From  
𝑑𝑆

𝑑𝑡
= 𝛼 −

𝛽𝑐 1 − 𝛿  1 − 𝜀  𝛼𝐴 +  𝐼 

𝑁ℎ  −  𝐼𝐷
𝑆 − 𝑑𝑠𝑆 

We obtain 

𝑆 𝑡   ≤
𝛼

 1 − 𝛿  1 − 𝜀 𝜆 + 𝑑𝑠

                                                  (7)   

And hence the feasible region of our study for the equilibrium points is 

Ω = { 𝑆, 𝐸, 𝐴, 𝑄, 𝐼𝐷 , 𝐼, 𝑅 ∈  𝑅+
4 |𝑆 ≤  

𝜌

 1 − 𝛿  1 − 𝜀 𝜆 + 𝑑𝑠

, 𝑁ℎ ≤ 𝑁ℎ 0 𝑒−∅𝑡           (8) 

It can be verified that Ω is positively invariant with respect to 𝑡 
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3.2 Positivity and boundedness 
For the model (1) to be epidemiologically meaningful, it is important to show that all its state variables 

are non-negative for all time (𝑡)  >  0 and that Ω is, indeed, bounded. We claim the following: 

 

Theorem 1.Let the initial data for the model (1) be 𝑆(0)  ≥  0, 

𝑆 0 ≥ 0, 𝐸 0 ≥  0, 𝑄 0 ≥ 0, 𝐴(0)  ≥  0, 𝐼(0)  ≥  0, 𝐼𝐷(0)  ≥  0, 𝑅(0)  ≥  0 

Then the solutions (𝑆, 𝐸, 𝑄, 𝐴, 𝐼, 𝐼𝐷 , 𝑅) of the model (1) are positive for all time 𝑡 >  0. 

Proof. Let  

𝑡1  =𝑠𝑢𝑝 𝑠𝑢𝑝 𝑡 >  0: 𝑆 > 0, 𝐸 > 0, 𝑄. 0, 𝐴 > 0, 𝐼 > 0, 𝐼𝐷 > 0, 𝑅 > 0 ∈  0, 𝑡                     (9) 

Thus, 𝑡1 >  0. 

We have, from the first equation of the system (1) that 
𝑑𝑆

𝑑𝑡
 = 𝛼 −  𝜆 1 − 𝛿  1 − 𝜀 + 𝑑𝑠 𝑆                                                                                              (10) 

where 

𝜆 =  
𝛽𝑐 𝑝𝛽𝐼𝐼 + 𝜀𝐷𝛽𝐷𝐼𝐷 

𝑁
 

which can be re-written as 

𝑑𝑆

𝑑𝑡
+  𝜆 1 − 𝛿  1 − 𝜀 + 𝑑𝑠 𝑆 = 𝜌                                                                                              (11) 

so that  

𝑆 𝑡 =𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝜆 + 𝑑𝑠 𝑡   
𝑡1

0

𝑒𝑥𝑝 𝑒𝑥𝑝  𝜆 + 𝑑𝑠 𝑡 𝜌 𝑑𝑡  

=𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝜆 + 𝑑𝑠 𝑡  𝜌 
𝑡1

0

𝑒𝑥𝑝 𝑒𝑥𝑝  𝜆 + 𝑑𝑠 𝜉  𝑑𝜉  

=𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝜆 + 𝑑𝑠 𝑡  
𝜌

 𝜆 + 𝑑𝑠 
𝑒𝑥𝑝 𝑒𝑥𝑝  𝜆 + 𝑑𝑠 𝜉  |

0

𝑡1
  

=
𝜌

 𝜆 + 𝑑𝑠 
𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝜆 + 𝑑𝑠 𝑡  𝑒𝑥𝑝 𝑒𝑥𝑝  𝜆 + 𝑑𝑠 𝑡1 − 1  

𝑆(𝑡) =
𝜌

 𝜆 + 𝑑𝑠 
 1 −𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝜆 + 𝑑𝑠 𝑡  + 𝑁ℎ(0)𝑒−∅𝑡 𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝜆 + 𝑑𝑠 𝑡    (12) 

But  

𝑒𝑥𝑝 𝑒𝑥𝑝 − 𝜆 + 𝑑𝑠 𝑡 ≡ 1 ∀ 𝑡, 𝜆 ≥, 𝑑𝑠 ≥ 0 

Therefore  

                                           𝑆 𝑡 ≥ 0                             (13) 

Similarly, it can be shown that: 𝐸 >  0, 𝐴 >  0, 𝑄 > 0, 𝐼 >  0, 𝐼𝐷 >  0, 𝑅 >  0. 

 

Lemma 1. The region 𝐷 =  {(𝑆, 𝐸, 𝑄, 𝐴, 𝐼, 𝐼𝐷 , 𝑅)  ∈ 𝑅+
4 ∶ 𝑁ℎ ≤ 𝑁ℎ(𝑡)}is positively-invariant for the model (8) 

and attracts all positive solutions of the model. 

Proof. Adding all the equations of the model gives 

                       𝑁ℎ
′  𝑡 =  𝑆 ′ 𝑡 + 𝐸′ 𝑡 + 𝑄′ 𝑡 +  𝐴′ 𝑡 +  𝐼′ 𝑡 + 𝐼𝐷

′  𝑡 + 𝑅′ 𝑡                    (14) 

Recall 

𝑁ℎ
′  𝑡 = 𝜌 − 𝑑𝐸𝐸 − 𝑑𝑠𝐴 − 𝑑𝑄𝑄 −   𝛿𝐼𝐷 − 𝑑𝐼𝐼  

And that ∅ = {𝑑𝐸 , 𝑑𝐴 , 𝑑𝑄 , 𝛿, 𝑑𝐼}, which gives  

                                           𝑁ℎ
′  𝑡 ≤  𝜌 −  𝑆 + 𝐸 + 𝑄 + 𝐴 + 𝐼 + 𝐼𝑑 + 𝑅 𝜙                                   (15) 

That is 
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𝑁ℎ
′ ≤ 𝜌 − 𝑁ℎ𝜙 

which can be re-written as 
𝑑𝑁ℎ

𝑑𝑡
+ 𝑁ℎ𝜙 ≤  𝜌                                                                                                               (16) 

 

we let 𝑁 be the solution of complementary part 
𝑑𝑁

𝑑𝑡
+ 𝑁𝜙 = 0 

𝑁 =𝑒𝑥𝑝 𝑒𝑥𝑝(−𝜙𝑡) 

Therefore, 

𝑁ℎ = 𝑢 𝑡 𝑁 𝑡  

 

Hence 

𝑁ℎ ≤ 𝑢 𝑡 𝑁 𝑡 =
𝛼

𝜙
 𝑒𝑥𝑝 𝑒𝑥𝑝 ∅𝑡 − 1 𝑒𝑥𝑝 𝑒𝑥𝑝 −∅𝑡 =

𝛼

𝜙
 1 −𝑒𝑥𝑝 𝑒𝑥𝑝 −𝜙𝑡   

       ⟹        𝑁ℎ ≤
𝛼

𝜙
 1 −𝑒𝑥𝑝 𝑒𝑥𝑝 −𝜙𝑡  + 𝑁ℎ 𝑒𝑥𝑝 𝑒𝑥𝑝 −𝜙𝑡        (17) 

𝑁ℎ(𝑡) approaches 
𝛼

𝜙
 as 𝑡 →  ∞. Hence the region 𝛺attracts all solutions in 𝑅+

7  

 

3.3 Equilibrium Points 

The equilibrium point of the system denotes a time when the rate of change of the population is zero. Thus, to 

obtain our equilibrium points we set  
𝑆 ′ 𝑡 = 𝐸′ 𝑡 =  𝑄′ 𝑡 =  𝐴′ 𝑡 =  𝐼′ 𝑡 =  𝐼𝐷

′  𝑡 =  𝑅′ 𝑡 = 0                        (18) 

and then solve the resulting system of non-linear equations below 

𝛼 −  1 − 𝛿  1 − 𝜀 𝜆𝑆 +  1 − 𝜑 𝛽
𝑅
𝑅                                                 = 0

𝛽𝑐 1 − 𝛿  1 − 𝜀 𝜆𝑆 − 𝜌 −  𝜍 + 𝜈 + 𝜋 + 𝜅 + 𝑑𝐸 𝐸 + 𝜑𝛽
𝑅
𝑅       = 0

𝜋𝐸 + 𝜏𝐴 + 𝜂𝐼 − (𝛾
𝑘

+ 𝑑𝑄)𝑄                                                                  = 0

𝜈𝐸 −   𝜃 +  𝛾
𝑎

+ 𝛾
𝑘

+ 𝜏 + 𝑑𝐴 𝐴                                                          = 0

𝜍𝐸 −   𝜓 +  𝛾
𝑜

 + 𝜂 + 𝑑𝐼 𝐼 + 𝜇𝐴                                                         = 0

𝜃𝐴 +  𝜓𝐼 −   𝛾
𝑖
 +  𝛿 𝐼𝐷 + 𝜅𝐸                                                              = 0

𝛾𝑖𝐼𝐷  +  𝛾
𝑎
𝐴 +  𝛾

𝑜
𝐼 + 𝛾

𝑘
𝑄 −  𝛽

𝑅
+ 𝑑𝑅 𝑅.                                         = 0

     (19) 

Two cases may arise in an attempt to solve the above problem vis: Case 

● (a): The Disease-Free Equilibrium Point (DFEP) 
● (b): The Endemic Equilibrium Point (EEP) 

 

Disease-Free Equilibrium Point: The DFEPwill occurs when 𝐼 =  𝐼𝐷  =  0. Therefore, applying system (19) 

become 
𝛼 − 𝜆𝑆 +  1 − 𝜑 𝛽𝑅𝑅             = 0                                                                             (𝑎) 

𝜆𝑆 −  𝜍 + 𝜋 + 𝑑𝐸 𝐸 + 𝜑𝛽𝑅𝑅  = 0    𝑏𝜋𝐸 + 𝜏𝐴 + 𝜂𝐼 −  𝛾𝑘 + 𝑑𝑄 𝑄 = 0  (𝑏)

𝜈𝜍𝐸 −  𝜃 + 𝛾𝑎 + 𝛾𝑘 + 𝜏 + 𝑑𝐴 𝐴      = 0                                                          (𝑐)

 1 − 𝜈 𝜍𝐸 + 𝛾𝑘𝐴 −  𝜂 + 𝛾𝑜 + 𝜓 + 𝑑𝐴 𝐼 = 0                                                     (𝑑)
𝜃𝐴 + 𝜓𝐼 + 𝜅𝐸 − 𝛾𝑖 − 𝑑𝑑𝐼𝐷     = 0                                                                            (𝑒)

𝛾
𝑜
𝐼 + 𝛾𝑎𝐴 + 𝛾𝑘𝑄 + 𝛾𝑖𝐼𝐷 −  𝛽𝑅 + 𝑑𝑅 𝑅.  = 0                                                      (𝑓)

  (20) 

Equation (10) is identically satisfied by 𝐴 = 𝐸 = 𝑄 = 𝑅 = 0 

a becomes 
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𝑆 =
𝛼

 𝜆 1 − 𝛿  1 − 𝜀 + 𝑑𝑠 
        (21) 

Hence DFE  

 𝑆, 𝐸, 𝑄, 𝐴, 𝐼, 𝐼𝐷 , 𝐼, 𝑅 =  
𝛼

𝑑𝑠

, 0, 0, 0, 0, 0, 0                                                           (22) 

Case 2: The Endemic Equilibrium Point (EEP) 

The necessary and sufficient condition for an endemic equilibrium 

𝑃∗  =  𝑆∗, 𝐸∗, 𝑄∗, 𝐴∗, 𝐼𝐷
∗ , 𝐼∗, 𝑅∗                                                                                (23) 

to exist in the feasible region Ω is that 

0 < 𝑆∗ ≤ 𝑆  

Where 𝑆 𝑎𝑛𝑑 𝑆∗  are solutions from DFE and EEP respectively. 

Now, endemic equilibrium point is obtained as solving the dynamics system of equations. We then have 

𝑆 =
𝜌

 𝜆 + 𝑑𝑠 
, 𝐸 = 𝑚0

𝜆𝜌

 𝜆 + 𝑑𝑠 
 1 + 𝛥 , 𝐴 = 𝑚

𝜆𝜌

 𝜆 + 𝑑𝑠 
 1 + 𝛥 , 𝐼 = 𝑛

𝜆𝜌

 𝜆 + 𝑑𝑠 
 1 + 𝛥 , 

𝑄 = 𝑛1

𝜆𝜌

 𝜆 + 𝑑𝑠 
 1 + 𝛥 , 𝐼𝐷 = 𝑛2

𝜆𝜌

 𝜆 + 𝑑𝑠 
 1 + 𝛥 , 𝑅 =

𝜆𝜌

𝛽𝑅 𝜆 + 𝑑𝑠 
𝛥              

where 

𝛥 =
 𝛾𝑜𝑛 + 𝛾𝑘𝑛1 + 𝛾𝑖𝑛2 + 𝑛3 

 𝑑𝑅 +  1 − 𝛾𝑜𝑛 − 𝛾𝑘𝑛1 − 𝛾𝑖𝑛2 − 𝑛3 𝛽𝑅 
, 𝑚0 =

1

 𝜍 + 𝜋 + 𝑑𝐸 
 

𝑚 =
𝜈𝜍

(𝜃 + 𝛾𝑎 + 𝜇 + 𝜏 + 𝑑𝐴) 𝜍 + 𝜋 + 𝑑𝐸 
,  

𝑛1 =
 𝜋 + 𝜂𝑛 +

𝜈𝜍𝜏

(𝜃 + 𝛾𝑎 +𝜇+𝜏+𝑑𝐴 )
 

(𝛾𝑘 + 𝑑𝑄) 𝜍 + 𝜋 + 𝑑𝐸 
 

𝑛2 =  
𝜃𝜈𝜍 +  𝜓𝑛 𝜃 +  𝛾𝑎 + 𝜇 + 𝜏 + 𝑑𝐴  𝜍 + 𝜋 + 𝑑𝐸 

 𝜃 +  𝛾𝑎 + 𝜇 + 𝜏 + 𝑑𝐴  𝜍 + 𝜋 + 𝑑𝐸  𝛾𝑖  +  𝛿 
  

𝑛3 =
𝛾𝑎𝜈𝜍

 𝜃 +  𝛾𝑎 + 𝜇 + 𝜏 + 𝑑𝐴  𝜍 + 𝜋 + 𝑑𝐸 
 

It is important to say here that, 

𝛥 =
 𝛾𝑜𝑛 + 𝛾𝑘𝑛1 + 𝛾𝑖𝑛2 +  𝑛3 

𝑑𝑅 + 𝛽𝑅 −1 + (𝛾𝑜𝑛 + 𝛾𝑘𝑛1 + 𝛾𝑖𝑛2 +  𝑛3 )
 

𝑅 ≥ 0 𝑖𝑓𝑓 𝑑𝑅 ≥  −1 + (𝛾𝑜𝑛 + 𝛾𝑘𝑛1 + 𝛾𝑖𝑛2 + 𝑛3 )𝛽𝑅  

That is 

𝑑𝑅 ≥  −1 + (𝛾𝑜𝑛 + 𝛾𝑘𝑛1 + 𝛾𝑖𝑛2 +  𝑛3 )𝛽𝑅  

𝛽
𝑅

≤
𝑑𝑅

  𝛾𝑜𝑛 + 𝛾𝑘𝑛1 + 𝛾𝑖𝑛2 +  𝑛3 − 1 
                                                                   (24) 

Equation (24) implies the recovered population was prevented from exposure to the virus. 

 

3.4 The Basic Reproduction Number (BRN) 
In epidemiology, the reproductive number, 𝑹𝟎, is of utmost significance. It is the quantity of invectives a 

main infectious agent produces in a virgin population that is completely susceptible. It provides information 

about the disease’s initial rate of growth over a generation. In other words, 𝑹𝟎 depends on the dynamics of the 

disease’s transmission and assesses the infectious diseases capacity for growth ([24], [25]). Throughout the 

mechanics of the early epidemic growth, the value of 𝑹𝟎 is unchanged. Therefore, if 𝑹𝟎 > 1, the disease spreads 
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and finally becomes pandemic, if 𝑹𝟎 < 1, it eventually dies off and tends to zero, and if 𝑹𝟎 = 𝟎, it is self-

sustaining and the number of affected people stays constant. 

Here, we demonstrate that 𝑹𝟎 is the fundamental proliferation number, defined by [5] as the normal 

number of optional contaminations causing by a single infectious in a completely helpless population during its 

entire period irresistible period, when the DFEP will be locally asymptomatically steady and the EEP will be 

temperamental i.e. the illness will cease to exist. However, when a strong individual will present more than one 

additional contamination during this time, the disease will continue to exist while the DFEP becomes shaky. 

When𝑹𝟎  =  𝟏, then the disease becomes endemic i.e the disease will remain dormant in the population at a 

constant rate. Thus the threshold quantity for eradicating the disease is to reduce the value of 𝑹𝟎 to be less than 

1. 

Thus 

0 < 𝑆∗ ≤ 𝑆  

Implies 

0 < 1 ≤
1

𝑆∗

𝜌

𝑑𝑠

⟹ 0 < 1 ≤ 𝑅0 

𝑆∗ =
𝜌

 𝜆 1 − 𝛿  1 − 𝜀 + 𝑑𝑠 
 

Where 

𝑅0 =
1

𝑆∗

𝜌

𝑑𝑠

=
 𝜆 1 − 𝛿  1 − 𝜀 + 𝑑𝑠 

𝑑𝑠

 

𝑅0 =
 𝜆 1 − 𝛿  1 − 𝜀 + 𝑑𝑠 

𝑑𝑠

                                                                                                   (25) 

Then the threshold quantity𝑅0is then used to calculate the total number of equilibria. 

Proposition 1.𝑃0 is the only equilibrium point in Ω if 𝑅0 ≤  1, However if 𝑅0 >  1 thenthere exist two 

equilibria, namely 𝑃0 (which is the DFEP) and another unique equilibrium𝑃∗ which is the Endemic Equilibrium 

Point(EEP). 

A quick check: 

                          𝑅0 =
 𝜆 1 − 𝛿  1 − 𝜀 + 𝑑𝑠 

𝑑𝑠

=
𝜆 1 − 𝛿  1 − 𝜀 

𝑑𝑠

+ 1 > 1                (26) 

That is 𝑅0 > 1 which implies there will exist two equilibria. 

 

4. Results and Discussions 
4.1 Parameter Effects on the BRN 

The carriers in the given system can have great effect on the basic reproduction number 𝑅0. 

The parameters 𝜆, 𝛿, 𝜀 and 𝑑𝑠 are all related to the carrier class and they also appear in the BRN. 

(i). From equation (25) , the rate of change of the dynamics with respect to 𝜆 is computed as follows 
 𝜕𝑅0

𝜕𝜆
=

 1 − 𝛿  1 − 𝜀 

𝑑𝑠

> 0 𝑖𝑓𝑓  𝛿, 𝜀 < 1 𝑜𝑟 𝛿, 𝜀 > 1                                                   (27) 

Otherwise,  

𝜕𝑅0

𝜕𝜆
< 0 

Hence, increasing the rate of exposure 𝜆will increase the BRN 𝑅0 thus increasing the spread of the 

disease. Hence the analysis of the 𝜆effect can be a useful control strategy in controlling the spread of 

the disease  

(ii). the effect of 𝛿, in equation (25), we obtain 
𝜕𝑅0

𝜕𝛿
=

−𝜆 1 − 𝜀 

𝑑𝑠

 

Since 𝜆, 𝜀 and 𝑑𝑠 are all positive numbers with 0 ≤ 𝜀 ≤ 1, then𝜀 = 0 imply  
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𝜕𝑅0

𝜕𝛿
=

−𝜆

𝑑𝑠

< 0                                                                              (28) 

So it means that the rate of change 𝑅0 with respect to 𝛿 decreases with for all values of 𝜆 and 𝑑𝑠 

The case when 𝜀 = 1 means 𝑅0 is constant within the domain of existence 

(iii). The effect of  𝜀 
𝜕𝑅0

𝜕𝜀
=

−𝜆 1 − 𝛿 

𝑑𝑠

 

Since 𝜆, 𝛿 and 𝑑𝑠 are all positive numbers with 0 ≤ 𝜀 ≤ 1, then𝛿 ≤ 0 imply  
𝜕𝑅0

𝜕𝜀
=

−𝜆

𝑑𝑠

< 0                                                                               (29)  

So it means that the rate of change 𝑅0 with respect to 𝜀 decreases with for all values of 𝜆 and 𝑑𝑠 

The case when 𝜀 = 1 means 𝑅0 is constant within the domain of existence 

(iv). The effect of 𝑑𝑠  
𝜕𝑅0

𝜕𝑑𝑠

= −
𝜆 1 − 𝛿  1 − 𝜀 

𝑑𝑠
2                                                            (30) 

From the above, it could be seen that 

𝜕𝑅0

𝜕𝑑𝑠

≤ 0 

4.2 Numerical simulations and results 
In this section, we present numerical simulations for the model which were conducted usingtherkf45 

solvers coded in Maple programming Language and show the sensitive parameters on the dynamics of the 

disease. The main focus of the simulation study is to investigate the response of model parameters upon the 

covid-19 pandemic. The results will be shown graphically in order to investigate the dynamics of the disease 

and then proffer solution based on the numerical simulations as to which method will be more effective in 

eradicating the disease. 

Baseline values of the parameters for model (1) 

𝛼 = 0.001, 𝜑 = 0.2. .0.6, 𝛽𝑅 = 0.8, 𝜋 = 1/120, 𝜅 =
1

60
, 𝜇 = 0.02, 𝜏 = 0.4, 𝛿 = 0.1𝛽𝑐 = 0.4236, 𝑝 = 𝛽𝐼 =

0.168, 𝜀𝐷 = 𝛽𝐷 =0.336,𝜀 = 0.1, 𝜂 = 1/14 

 𝜓 = 0.0088 , 𝜈 = 0.5,𝛾
𝑘

= 1/14, 𝛾𝑖 = 0.06, 𝛾𝑎 =  𝛾𝑜 = 0.13978, 𝑑𝑆 = 𝑑𝐸 = 𝑑𝐴 = 𝑑𝐼 = 𝑑𝐼𝑑
= 𝑑𝑄 = 𝑑𝑅 =

0.015, 𝜃 = 0.00002, 𝜍 =
1

5.2
, 

(𝑆 0 , 𝐸 0 , 𝐴 0 , 𝐼 0 , 𝐼𝐷 0 , 𝑄(0), 𝑅(0))  =  (367704, 50, 30, 20, 0) 

 

4.3 Discussions 
Here, we discuss the behavior of the model. Under various computational simulations of the proposed 

model for state variables of interest, the transmission dynamics of an infectious disease can be adequately 

understood. The susceptible humans (𝑆(𝑡)), Quarantine on exposed humans (𝑄(𝑡)), asymptomatic infectious 

humans (𝐴(𝑡)), symptomatic infectious humans (𝐼(𝑡)), detected infectious humans (𝐼𝐷(𝑡)) and recovered 

humans (𝑅(𝑡)) populations are investigated with different values of the parameters with an assumption that 

those in the 𝐼𝐷are completely isolated and do not come in contact with the general population.  

In Figure 2, we discovered that an increase in the susceptible class triggers or boost the dynamics of 

Covid-19 while a decrease in the rate of 𝐼𝐷(t) brings about declination to the dynamics of Covid-19. Figure 3 

indicated that increase in the value of 𝜑 diminishes the rate of susceptible class. In Figure 4, an increase in the 

value of 𝛿 brings about an increase in susceptible class. Figures 5 depictsthat an enhancement in the value of the 

parameters 𝜌 enhances the rate of susceptible class while an increase in the value of 𝜆 in Figure 6 turns out to 

diminish the rate of susceptible humans while. We observed in Figure 7 that as 𝜀 increases, there is an increase 

in the rate of susceptible class.  

In Figure 8, enhancing the value of 𝜌will bring about decrease in the rate of asymptomatic class while. In 

Figures 9 – 11, it is obvious that as the value of the parameters 𝜃, 𝜇𝑎𝑛𝑑𝜏 increases, the asymptomatic population 

decreases at each point while in Figures 12, an enhancement in the values of 𝜌 declines the rate of infected 
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population. Increasing the value of 𝜇 in Figure 13 will enhance the rate of infected population. Figures 14 and 

15 show that as 𝜓𝑎𝑛𝑑𝜂 increases, the infected population diminishes while figures 16 and 17 depicts that an 

enhancement in the value of 𝜃𝑎𝑛𝑑𝜓 increases the rate of detected-infected population.  

Moreover, the impact of 𝜌𝑎𝑛𝑑𝜈 in figures 18 – 20 shows that as 𝜌, 𝜈𝑎𝑛𝑑𝜋 increases, the quarantine 

humans profile enhances but a decrease in the value of 𝜌, 𝜈𝑎𝑛𝑑𝜋 will diminish the rate of quarantine population. 

In figures 21, increasing the value of 𝜇 will bring about a declination in the rate of quarantine population. 

Figures 22, 23 and 25 indicated that an increase in the value of 𝜌, 𝛿𝑎𝑛𝑑𝛽 will bring about a decrease in the rate 

of recovery population while an enhancement in the value of 𝜇 in Figure 24 enhances the recovery population.  

 
Figure 2: Covid-19 Dynamics with reference to sub-

class characteristics 

 
Figure 3: The different values of 𝜑 for the 

susceptible human sub-class 

 
Figure 4: The different values of 𝛿 for the 

susceptible human sub-class 

 
Figure 5: The different values of 𝜌 for the 

susceptible human sub-class 
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Figure 6: The different values of 𝜆 for the 

susceptible human sub-class 

 
Figure 7: The different values of 𝜀 for the 

susceptible human sub-class 

 
Figure 8: The different values of 𝜌 for the 

asymptomatic human sub-class 

 
Figure 9: The different values of 𝜃 for the 

asymptomatic human sub-class 

 
Figure 10: The different values of 𝜇 for the 

asymptomatic human sub-class 

 
Figure 11: The different values of 𝜏 for the 

asymptomatic human sub-class 
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Figure 12: The different values of 𝜌 for the infected 

human sub-class 

 
Figure 13: The different values of 𝜇 for the infected 

human sub-class 

 
Figure 14: The different values of 𝜓 for the infected 

human sub-class 

 
Figure 15: The different values of 𝜂 for the infected 

human sub-class 

 
Figure 16: The different values of 𝜃 for the detected-

infected human sub-class 

 
Figure 17: The different values of 𝜓 for the 

detected-infected human sub-class 
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Figure 18: The different values of 𝜌 for the 

quarantined human sub-class 

 
Figure 19: The different values of 𝜈 for the 

quarantined human sub-class 

 
Figure 20: The different values of 𝜋 for the 

quarantined human sub-class 

 
Figure 21: The different values of 𝜇 for the 

quarantined human sub-class 

 
Figure 22: The different values of 𝜌 for the recovery 

human sub-class 

 
Figure 23: The different values of 𝛿 for the recovery 

human sub-class 
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Figure 24: The different values of 𝜇 for the recovery 

human sub-class 

 
Figure 25: The different values of 𝛽 for the recovery 

human sub-class 

 

5.1 Summary of findings 

The SEIR model utilized in this research work shows the model of Covid infection transmission starting 

with one boundary of the populace then onto the next. This proposal recognized the impact of the model and 

how it uncovers that Covid won't be annihilated however the transmission elements will help our forecasts on 

control. 

 

5.2 Conclusion 

This study gives an understanding on the transmission models and control of Covid. The SEIR model 

was utilized subsequently we set up an expectation that Covid-19 has come to remain however transmission can 

be controlled. The multiplication number was acquired by the utilization of cutting-edge grid and the 

investigation of soundness got for the mode the transmission elements of all boundary were viewed as which 

gives more understanding the rate at which individuals move from one populace boundary to the next 

concerning time. 

 

5.3 Recommendation 

More exposure and awareness on the preventive measures and control is required to diminish the spread 

and conceivably limit the impact of the infection within the briefest conceivable time. 

 

Nomenclature: Description of variables and parameters in the model of this dissertation. 

Parameter Interpretation 

𝑆 Susceptible humans 

𝐸 Exposed humans (infected but not infectious and show no sign of disease) 

𝑄 Quarantined humans’ subclass 

𝐴 Asymptomatically-infectious humans (undetected) 

𝐼 Symptomatically-infectious humans (undetected) 

𝐼𝐷  Detected infectious humans (asymptomatic and symptomatic) via testing 

𝑅 Recovered humans 

𝜍 Progression rate from exposed state to infectious state 

𝜈 Fraction of new infectious humans that are asymptomatic 

𝛼 Modification parameter that accounts for the reduced infectiousness of humans in the A class 

when compared to humans in the / class 
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𝛾
𝑎

 Recovery rates for individuals in the 𝐴. 𝐼 and 𝐼𝐷  classes respectively  

𝜓 detection rate (via contact tracing and testing) for the I class 

𝜃 detection rate (via contact tracing and testing) for the 𝐴 class 

𝑑   Disease induced death rates for individuals in the/and 𝐼 class respectively 

𝛽
𝑐
 Effective transmission rate 

𝛽
𝑅

 Rate of recovered that are exposed 

𝛽
𝐼
 Rate of symptomatically infectious individuals that are exposed 

𝛽
𝐷

 Rate of detected infected individuals that are exposed 

𝜋 Rate of exposed population that accept quarantine 

𝜇 Fraction of exposed that became asymptomatic 

𝜏 Rate of asymptomatically exposed to quarantined 

𝛿 Proportion that maintains minimum distance 

𝜂 Rate of Infected symptomatic that are quarantined 

𝜆 Force of infection 

𝜀 The rate of Quarantined individuals to become susceptible to the virus again 

𝜅 Removal rate of infected detected cases 

𝜌 detected individuals in relation to symptomatic (infected) individuals. 

𝜑 Rate at which the detected infected individuals move from severe to mild isolation 

𝜀𝐷  The rate of Quarantined individuals that are detected with the virus.  

𝑝 The proportion at which infected symptomatic individual are generated from the exposed class. 

   𝑆, 𝐸, 𝐴, 𝐼, 𝐼𝐷 , 𝑄, 𝑅 
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