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Abstract: This paper seeks to further the work of Tripathy et al ([16]). The work is rooted and build from their 

new definition of Multi-Group (Multiset Group). We began with the establishment of the synergy and 

comparison between the Nazmul et al’s([6]) and Tripathy et al’s([16]) definition of multi-group. Where we 

discover that every multigroup is a multiset group but the converse need not hold we also study the 

generalisation of the closure of intersection of two or more multiset groups under multiset operation in which it 

is also a multiset group while that of union need not be. An attempt to introduce and study the classical abelian 

groups under multiset context (which we termed as multiset abelian group), normal subgroup (normal sub 

multiset group), and centre of the group (centre of a multiset group). In all the study results were recorded. 
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1. Introduction 
Cantor is termed as the father of set theory which he propounded in 1804 and in his axioms stated that 

elements are not allowed to repeat in a given set, but Multiset (mset for short) allows the repetition of elements 

in a particular mset. It is observed from the survey of available literatures on msets and applications that the idea 

of mset was hinted by R. Dedikind in 1888. The mset theory which contains set theory as a special case was 

introduced by Cerf et al. [2]. The term mset, as noted by Knuth [4] was first suggested by N.G de Bruijn in a 

private communication to him. Further study was carried on by Yager [14], Blizard [1]. Other researchers ([5], 

[7], [8]) gave a new dimension to the multiset theory.  

Msets are very useful structures arising in many areas of mathematics and computer science. Mset 

Topological space has been studied by Shravan and Tripathy [10]. Research on the mset theory has been gaining 

grounds. The research carried out so far shows a strong analogy in the behaviour of msets. It is possible to 

extend some of the main notion and result of sets to the setting of msets. In 2009, Girish and Sunil [15], 

introduced the concepts of relations, function, composition, and equivalence in msets context. Tella and Daniel 

([12], [13]) have considered sets of mappings between msets and studied about symmetric groups under mset 

perspective. Nazmul et al. [6] improved on Tella and Daniel’s work and added two axioms which marks the 

foundation of studying group theory in mset perspective. In this paper we present a synergy and comparison 

between the Nazmul et al’s [6](Multigroup) and Tripathy et al’s [16](Multiset Group) definition of the group 

theory under multiset perspective. We study the generalisation of the intersection of two multiset groups in 

which it is also a multiset group while that of union need not be. An attempt to study the classical normal sub 

group, abelian sub groups and centre of the group was studied under multiset perspective following their 

definition were carried out. In all these, result were recorded.       

 

2 Preliminary definitions and notations 
Definition 2.1[1]. An mset 𝐴over the set X  can be defined as a function 𝐶𝐴: 𝑋 → ℕ =  0,1,2, …   where the 

value  𝐶𝐴(𝑥) denote the number of times or multiplicity or count function of 𝑥  𝑖𝑛 𝐴 . For example, Let 𝐴 =
 𝑥, 𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧 , then 𝐶𝐴 𝑥 = 3, 𝐶𝐴 𝑦 = 3, 𝐶𝐴 𝑧 = 2. [𝐶𝐴 𝑥 = 0 ⇒ 𝑥 ∉ 𝐴]. The mset 𝑀 over the set 𝑋 is 

said to be empty if 𝐶𝑀 𝑥 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. We denote the empty mset by ∅. Then 𝐶∅ 𝑥 = 0, ∀ 𝑥 ∈
𝑋. 𝑖𝑓 𝐶𝐴 𝑥 > 0, 𝑡𝑕𝑒𝑛 𝑥 ∈ 𝐴. We denote the set of all finite mset 𝑀 over the set 𝑋 to be 𝑀(𝑋). Also, elements of 

mset say 𝐴 can belong 𝑛 many times denoted as 𝑥 ∈𝑛 𝐴. Which means 𝑥 belong to 𝐴𝑛-times.  

 

Definition 2.2[1]: The cardinality of a mset 𝑀 denoted  𝑀  or 𝑐𝑎𝑟𝑑(𝑀) is the sum of all the multiplicities of its 

elements given by the expression  𝑀 =  𝑐𝐴 𝑥 𝑥∈𝑋  . 

Note: Presentation of mset  on paper work became  a challenged as every researcher has his taught in that aspect 

. However the used of square brackets was adopted ([1], [9],[11]) to represent an mset and ever since then it has 

become a standard. For example if the multiplicity of an mset say 𝑥 is 2, for 𝑦 say 3,and for 𝑧 say 2, it can be 

represented as  𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧,  , others may put it like  𝑥, 𝑦, 𝑧 2,3,2 or  𝑥2, 𝑦3 , 𝑧2   or 

 𝑥2, 𝑦3, 𝑧2  𝑜𝑟  2 𝑥 , 3 𝑦 , 2 𝑧   
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Definition 2.3[2]: Let 𝑀 be an mset drawn from a set X. The support set of M denoted by𝑀∗ is a subset of X 

given by 𝑀∗ =  𝑥 𝜖 𝑋: 𝐶𝑀 𝑥 > 0 . that is 𝑀∗ is an ordinary set. 𝑀∗ is also called root or support set.  

 

Definition 2.4[1]: Equal msets. Two msets A and B are said to be equal denoted A = B if and only if for any 

objects 𝑥 ∈ 𝑋, 𝐶𝐴(𝑥) = 𝐶𝐵(𝑥). This is to say that A = B if the multiplicity of every element in A is equal to its 

multiplicities in B and conversely. Clearly, A = B⟹𝐴∗ = 𝐵∗ , though the converse  need  not  hold. For 

example, let 𝐴 =  𝑎, 𝑎, 𝑏, 𝑏, 𝑐  𝑎𝑛𝑑 𝐵 =  𝑎, 𝑎, 𝑏. 𝑏, 𝑏, 𝑐, 𝑐  𝑤𝑕𝑒𝑟𝑒 𝐴∗ = 𝐵∗ =  𝑎, 𝑏, 𝑐  𝑏𝑢𝑡 𝐴 ≠ 𝐵. 

 

Definition 2.5[1]: Submsets. Let X  be a set and let A and B be msets over X. A is a submset of B, denoted by 

𝐴 ⊆ 𝐵 𝑜𝑟 𝐵 ⊇ 𝐴, if 𝐶𝐴 𝑥 ≤ 𝐶𝐵 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. Also if 𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝐴 ≠ 𝐵, then A is called proper submset 

of B denoted by 𝐴 ⊂ 𝐵. In other words 𝐴 ⊂ 𝐵 if 𝐴 ⊆ 𝐵𝑎𝑛𝑑 𝑡𝑕𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑥 ∈ 𝑋 such that 𝐶𝐴 𝑥 <
𝐶𝐵 𝑥 . We assert that a mset 𝐵 is called the parent mset in relation to the mset A. 

 

Definition. 2.6 [1]: Regular or Constant mset: A mset 𝐴  over the set 𝑋 is called regular or constant if all its 

elements are of the same multiplicities, i.e for any 𝑥, 𝑦 ∈ 𝐴 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑥 ≠ 𝑦, 𝐶𝐴 𝑥 = 𝐶𝐴 𝑦 . 
 

Definition 2.7[1] : The notations  ⋀ and ⋁:[6]. The notations ⋀ and ⋁ denote the minimum and maximum 

operator respectively for instance 𝐶𝐴 𝑥 ⋀𝐶𝐴 𝑦 = 𝑚𝑖𝑛 𝐶𝐴 𝑥 , 𝐶𝐴 𝑦   𝑎𝑛𝑑 𝐶𝐴 𝑥 ⋁𝐶𝐴 𝑦 =
𝑚𝑎𝑥 𝐶𝐴 𝑥 , 𝐶𝐴 𝑦  . 
 

Definition 2.8[9]: Union (∪) of msets. Let A and B be two msets over a given domain set X. The union of 

𝐴 𝑎𝑛𝑑 𝐵 denoted by 𝐴 ∪ 𝐵is the mset defined by 𝐶𝐴∪𝐵 𝑥 = 𝑚𝑎𝑥 𝐶𝐴 𝑥 , 𝐶𝐵 𝑥  ,  
That is if object 𝑥 occurrs 𝑎 times in 𝐴 and 𝑏 times in 𝐵. Then it occurs maximum  𝑎, 𝑏  times in A∪B, if 

such maximum exist. 

 

Definition 2.9[9]: Intersection (∩) of msets. Let A and B be two mset over a given domain set X. The 

intersection of two mset A and B denoted by A∩B, is the mset for which 𝐶𝐴∩𝐵 𝑥 = 𝑚𝑖𝑛 𝐶𝐴 𝑥 , 𝐶𝐵 𝑥  for all 

𝑥 ∈ 𝑋. 

 In other words, A∩B is the smallest mset which is contained in both A and B. That is an objects x occuring 𝑎 

times in A and 𝑏 in B, occurs minimum (a, b) times in A∩B. 

 

Definition 2.10[9]: Addition or sum of Mset. Let A and B be two msets over a given domain set X. The direct 

sum or arithmetic addition of A and B denoted by A+B or A⊎B is the mset defined by 𝐶𝐴+𝐵 𝑥 = 𝐶𝐴 𝑥 + 𝐶𝐵 𝑥  

for all 𝑥 ∈ 𝑋. 

That is, an object 𝑥 occurring a times in A and b times in B, occurs 𝑎 + 𝑏 times in A⊎B. 

Thus ∣A⊎B∣= ∣A∪B∣ + ∣A∩B∣. 
 

Definition 2.11[9]: Difference of msets. Let A and B be two msets over a given domain set X. then the 

difference of B from A, denoted by 𝐴 − 𝐵 is the mset such that 𝐶𝐴−𝐵(𝑥) = 𝑚𝑎𝑥 𝐶𝐴 𝑥 − 𝐶𝐵 𝑥 , 0 for all 𝑥 ∈ 𝑋. 

If 𝐵 ⊆ 𝐴, then 𝐶𝐴−𝐵(𝑥) = 𝐶𝐴 𝑥 − 𝐶𝐵 𝑥 . 

It is sometimes called the arithmetic difference of B from A. If 𝐵 ⊈ 𝐴 this definition still holds. It follows 

that the deletion of an element 𝑥 from an mset A give rise to a new mset 𝐴′ = 𝐴 − 𝑥 such that 𝐶𝐴′  𝑥 =
 𝐶𝐴 𝑥 − 1,0 . 
 

Definition 2.12[3]: Let  𝑚 𝑥 , 𝑛 𝑦  𝑘  denote an entry which means 𝑥 occurs 𝑚 times, 𝑦 occurs 𝑛 times and 

the ordered pair (𝑥, 𝑦) occurs 𝑘 times. Let 𝐶1(𝑥, 𝑦) denotes the count of the first coordinate in the ordered pair 

(𝑥, 𝑦) and 𝐶2(𝑥, 𝑦) denote the count of the second coordinate in the ordered pair  (𝑥, 𝑦). 

 

Definition 2.13[3]: Let  𝑀1 and 𝑀2 be two msets drawn from a set 𝑋; then the Cartesian product of 𝑀1 and 𝑀2 

is defined as 

𝑀1 ⤬ 𝑀2 =   𝑚 𝑥 , 𝑛 𝑦  𝑚𝑛 : 𝑥 ∈𝑚 𝑀1 , 𝑦 ∈𝑚 𝑀2  
Generally, the Cartesian product of three or more non empty msets can be gotten from the generalization of the 

two msets. That is the Cartesian product  𝑀1 ⤬ 𝑀2 ⤬ ⋯ ⤬ 𝑀𝑛  of non empty msets 𝑀1, 𝑀2 , … , 𝑀𝑛  is the msets of 

all ordered n-tupples (𝑚1, 𝑚2, … , 𝑚𝑛) where 𝑚𝑖 ∈𝑟𝑖 𝑀𝑖 , 𝑖 = 1,2, … , 𝑛 and (𝑚1 , 𝑚2, … , 𝑚𝑛) ∈𝑝 𝑀1 ⤬ 𝑀2 ⤬
⋯ ⤬ 𝑀𝑛  with 𝑝 = ∏𝑟𝑖 , 𝑟𝑖 = 𝐶𝑀𝑖

 𝑚𝑖 , 𝑖 = 1,2, … , 𝑛. That is  

𝐶𝑀1⤬𝑀2
 𝑚1, 𝑚2 = 𝐶𝑀1

 𝑚1 . 𝐶𝑀2
 𝑚2  

For example: Let 𝐴 = [1 𝑥 , 2 𝑦 ] and 𝐵 = [2 𝑥 , 3 𝑧 ], then  
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𝐴 ⤬ 𝐵 =   1 𝑥 , 2 𝑥  2 ,  1 𝑥 , 3 𝑧  3 ,  2 𝑦 , 2 𝑥  4 ,  2 𝑦 , 3 𝑧  6   
 

Theorem 2.14[3]: For any two non empty msets 𝑀1and 𝑀2 

𝐶𝑀1⤬𝑀2
[ 𝑥, 𝑦 ] = 𝐶𝑀1

 𝑥 . 𝐶𝑀2
 𝑦  

And ǀ𝑀1 ⤬ 𝑀2ǀ = ǀ𝑀1ǀ. ǀ𝑀2ǀ. In general, ǀ𝑀1 ⤬ 𝑀2 ⤬ ⋯ ⤬ 𝑀𝑛 ǀ = ǀ𝑀1ǀ. ǀ𝑀2ǀ … ǀ𝑀𝑛 ǀ. 
 

Theorem 2.15 [11]. For any 𝑀 ∈ 𝑀(𝑋), 𝑀∗ =  𝑀𝑘 ∗ =  𝑘𝑀 ∗ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ∈ 𝑁 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑘 ≥ 1. 

 

Theorem 2.16 [11]: Let 𝑀, 𝑁 ∈ 𝑀(𝑋),  𝑀 ⊆ 𝑁 → 𝑀∗ ⊆ 𝑁∗ 

 

Definition 2.17[1]: The exact multiplicity axiom: ∀𝑥∀𝑦∀𝑛∀𝑚 𝑥 ∈𝑛 𝑦 ∧ 𝑥 ∈𝑚 𝑦 → 𝑛 = 𝑚. In other words, 

the multiplicity with which an element belongs to a mset is unique. 

 

Definition 2.18[1]: The axiom of extensionality: ∀𝑥∀𝑦(∀𝑧∀𝑛 𝑧 ∈𝑛 𝑥 ⟺ 𝑧 ∈𝑛 𝑦 → 𝑥 = 𝑦. In other words, if 

two msets have exactly the sane elements occurring with exactly the same multiplicities, then they are equal. 

 

Definition 2.19[6]: Let Xbe a group. An mset A over X is said to be a multigroup (mgroup for short) over X if 

the count  function 𝐶𝐴(𝑥) satisfied the following conditions: 

(i) 𝐶𝐴 𝑥𝑦 ≥ 𝐶𝐴 𝑥 ∧ 𝐶𝐴 𝑦 ∀ 𝑥, 𝑦 ∈ 𝑋.  

(ii) 𝐶𝐴 𝑥−1 ≥ 𝐶𝐴 𝑥 ∀𝑥 ∈ 𝑋 

It follows immediately that: 

𝐶𝐴 𝑥−1 = 𝐶𝐴 𝑥  ∀ 𝑥 ∈ 𝑋 

We denote the set of all mgroups over X by 𝑀𝐺(𝑋). 

 

Definition 2.20[6]; Compositions. 

 Let 𝐴, 𝐵 ∈ 𝑀𝐺(𝑋), then we call 𝐴 ∘ 𝐵 as the composition between two mgroups defined as  

𝐶𝐴∘𝐵 𝑥 = ⋁ 𝐶𝐴 𝑦 ∧ 𝐶𝐵 𝑧 : 𝑦, 𝑧 ∈ 𝑋 ∋ 𝑦𝑧 = 𝑥  
 

Definition 2.21[16]: Let 𝐴 be a non empty mset whose maximum multiplicity is 𝑛 and 𝐴∗ be the root set of 𝐴. 

Let (𝑚1 𝑥1 ), (𝑚2 𝑥2 ) ∈ 𝐴. Then ‘⊛’ is called a binary mset composition on  𝐴 if 𝑚1 𝑥1 ⊛ 𝑚2 𝑥2 =
𝑚1 ⊛1 𝑚2 𝑥1 ⊛2 𝑥2 , where  

(i) ′ ⊛1 ′ is a binary composition on 𝑁 and (𝑚1 ⊛1 𝑚2) ≤ 𝑛. 

(ii) ′ ⊛2 ′ is a binary composition on 𝐴∗. 

 

Definition 2.22[16]: Let ′ ⊛ ′ is called a binary mset composition on 𝐴. Then 𝐴 is called closed under   ′ ⊛ ′ if  
𝑚1 𝑥1 ⊛ 𝑚2 𝑥2 ∈ 𝐴 for all  𝑚1 𝑥1 , 𝑚2 𝑥2 ∈ 𝐴. 

 

Definition 2.23[16]: A binary mset composition ⊛ on mset 𝐴 is said to be associative if  

𝑚1 𝑥1 ⊛  𝑚2 𝑥2 ⊛ 𝑚3 𝑥3  = (𝑚1 𝑥1 ⊛ 𝑚2 𝑥2 ) ⊛ 𝑚3 𝑥3  for all 𝑚1 𝑥1 , 𝑚2 𝑥2 , 𝑚3 𝑥3 ∈ 𝐴. 

 

Definition 2.24[16]: A binary mset composition ⊛ on mset 𝐴 is said to be commutative if  

𝑚1 𝑥1 ⊛ 𝑚2 𝑥2 = 𝑚2 𝑥2 ⊛ 𝑚1 𝑥1 , for all 𝑚1 𝑥1 , 𝑚2 𝑥2 ∈ 𝐴. 

 

Definition 2.25[16]: Let 𝐴 be a mset with maximum multiplicity 𝑛 and  ′ ⊛ ′ be a binary mset composition on  

𝐴. An element 𝑛 𝑒 ∈ 𝐴 is called the identity element of  𝐴 if  

𝑛 𝑒 ⊛ 𝑚 𝑥 = 𝑚 𝑥 = 𝑚 𝑥 ⊛ 𝑛 𝑒  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 𝑥 ∈ 𝐴. 

 

Definition 2.26[16]: Let 𝐴 be a mset with maximum multiplicity 𝑛 and  ′ ⊛ ′ be a binary mset composition on  

𝐴. An element (𝑚 𝑥 )−1 ∈ 𝐴 is called the inverse element of 𝑚 𝑥 ∈ 𝐴 if   

(𝑚 𝑥 )−1 ⊛ 𝑚 𝑥 = 𝑛 𝑒 = 𝑚 𝑥 ⊛  𝑚 𝑥  −1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 𝑥  𝑎𝑛𝑑 (𝑚 𝑥 )−1 ∈ 𝐴. 

Definition 2.27[16]: Let 𝐴 be a non empty mset over the set  𝑋 with the binary mset composition ⊛. Then the 

pair (𝐴,⊛) is called a multiset group of order 𝑛 if the following axioms are satisfied; 

(i) Closure property  

i.e   𝑚1 𝑥1 ⊛ 𝑚2 𝑥2  ∈ 𝐴, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚1 𝑥1, 𝑚1 𝑥2  ∈ 𝐴  . 

       (ii) Associativity property  

 𝑚1 𝑥1  ⊛ 𝑚2 𝑥2  ⊛ 𝑚3 𝑥3 = 𝑚1 𝑥1  ⊛  𝑚2 𝑥2 ⊛ 𝑚3 𝑥3   

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚1 𝑥1 , 𝑚1 𝑥2, 𝑚3 𝑥3  ∈ 𝐴  . 
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(ii) Existence of identity 

𝑛 𝑒  ⊛ 𝑚 𝑥  = 𝑚 𝑥  = 𝑚 𝑥  ⊛ 𝑛 𝑒   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 𝑥  ∈ 𝐴. 

 

(iii) Existence of inverse 

i.e for any  𝑚 𝑥  ∈ 𝐴 there exist an element as 𝑟 𝑧 ∈ 𝐴 called the inverse element of 𝑚 𝑥  ∈ 𝐴 if   

𝑚 𝑥  ⊛ 𝑟 𝑧  = 𝑛 𝑒   = 𝑟 𝑧  ⊛ 𝑚 𝑥   

Where 𝑚1 𝑥1 ⊛ 𝑚2 𝑥2 = (𝑚1 ⊛1 𝑚2) (𝑥1 ⊛2 𝑥2)  ,  ⊛1 and ⊛2 operations on multiplicities 𝑚 

and 𝑥 respectively such that  𝑚1 ⊛1 𝑚2 ≤ 𝑛. 

We denote the inverse element  𝑟 𝑧  of  𝑚 𝑥  by (𝑚 𝑥 )−1. Thus for any element 𝑚 𝑥 ∈ 𝐴, we have 𝑚 𝑥 ⊛
(𝑚 𝑥 )−1 = (𝑚 𝑥 )−1 ⊛ 𝑚 𝑥 = 𝑛 𝑒    

 

Theorem 2.28[16]: A mset 𝐴 over the set 𝑋 is a multiset group if and only if 

 𝑘 𝑥 ⊛ (𝑚 𝑥 )−1 ∈ 𝐴  𝑓𝑜𝑟 𝑎𝑚𝑦 𝑘 𝑥 , 𝑚 𝑥 ∈ 𝐴. 

 

Theorem 2.29[16]: In a multiset group. The identity element is unique. 

 

Theorem 2.30[16]: For each of the element in a multiset group, there exist an unique inverse element. 

 

Definition 2.31[16]: Let  (𝐴, ⊛) be a multiset group. Then rhe multiset group is called abelian multiset group 

if it satisfied the commutativity property. 

 

Definition 2.32[16]: A sub multiset group of a multiset group  (𝐴,⊛) is a sub mset of 𝐴 which is a group with 

respect tu the same binary mset composition ′ ⊛ ′ as in 𝐴. 

 

Theorem 2.33[16]: A necessary and sufficient condition for a non empty sub mset 𝑆 of a multiset group   

(𝐴, ⊛) of order  𝑛 to be a sub multiset group is that for all   𝑚1  𝑎, 𝑚1 𝑏  ∈ 𝑆 implies  (𝑚2 𝑏 )−1  ∈ 𝑆. 

 

Theorem 2.34[16]: Intersection of multiset group is again a multiset group.  

 

Theorem 2.35[16]: The union of multiset group may not be a multiset group.  

 

3 Main Result 
Proposition 3.1: If 𝐴 is a multigroup over the group 𝑋, then 𝐴 is a multiset group. 

Proof: Supposed that  a non empty multiset 𝐴 over the set 𝑋 is a multigroup. Then 𝑋 is a group and  

(i) 𝐶𝐴 𝑥𝑦 ≥ 𝐶𝐴 𝑥 ∧ 𝐶𝐴 𝑦 ∀ 𝑥, 𝑦 ∈ 𝑋.  

(ii) 𝐶𝐴 𝑥−1 ≥ 𝐶𝐴 𝑥 ∀𝑥 ∈ 𝑋 (by definition 2.19) 

Now given that 𝑒 is an identity element in  𝑋, then for any 𝑥 ∈ 𝐴 

𝑥𝑥−1 = 𝑒 𝑤𝑕𝑖𝑐𝑕 𝑚𝑒𝑎𝑛𝑠 

𝐶𝐴 𝑥𝑥−1 = 𝐶𝐴 𝑒  

But 𝐶𝐴 𝑥𝑥−1 ≥ 𝐶𝐴 𝑥 ∧ 𝐶𝐴 𝑥−1 = 𝐶𝐴 𝑥  

Therefore 𝐶𝐴 𝑒 ≥ 𝐶𝐴 𝑥  in fact 𝐶𝐴 𝑒 ≥ 𝐶𝐴 𝑥 > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥. In particular, 

𝐶𝐴 𝑒 > 0, 𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔 𝐴 ≠ ∅ 𝑎𝑛𝑑 𝑒 ∈ 𝐴. 

Now let 𝑛 = 𝐶𝐴 𝑒   this implies that  𝑛 𝑒  ∈ 𝐴. 

Also, let ‘⊛1’ and ‘⊛2’ be operations on the multiplicities of  𝐴 and the elements of 𝑋 respectively. Also let 

𝑟 𝑧 , 𝑚 𝑥 ∈ 𝐴 and ⊛ be binary composition on 𝐴 defined by 𝑚 𝑥 ⊛ 𝑟 𝑧  = (𝑚 ⊛1 𝑟)  𝑥 ⊛2 𝑧  (Uniqueness 

of multiplicity of an object in an mset and the fact that 𝐴∗ is a group), then for any 𝑚 𝑥 ∈ 𝐴, 

 𝑛 𝑒 ⊛ 𝑚 𝑥  = (𝑛 ⊛1 𝑚)  𝑒 ⊛2 𝑥  = 𝑛 ⊛1 𝑚/𝑥 = 𝑚/𝑥. From the operation ⊛2 on 𝐴∗, 𝑒 ⊛2 𝑥 = 𝑥. Also 

for ⊛,,  𝑛 ⊛1 𝑚 = 𝑚 (uniqueness axiom (Blizard, (1989))). 

Hence 𝑛 𝑒 ⊛ 𝑚 𝑥  = (𝑛 ⊛1 𝑚)  𝑒 ⊛2 𝑥  = 𝑛 ⊛1 𝑚/𝑥 = 𝑚/𝑥 = 𝑚 𝑥 ⊛ 𝑛 𝑒  showing the existence of 

identity element 𝐴. 

Now let 𝑚 𝑥 , 𝑘 𝑦 ∈ 𝐴 then 𝑚, 𝑘 > 0 𝑎𝑛𝑑 𝑚 𝑥 ⊛ 𝑘 𝑦  = (𝑚 ⊛1 𝑘)  𝑥 ⊛2 𝑦   but 𝑥 ⊛2 𝑦 ∈ 𝐴∗. In 

particular 𝑥 ⊛2 𝑦 ∈ 𝐴 𝑎𝑛𝑑 (𝑚 ⊛1 𝑘)  𝑥 ⊛2 𝑦  ∈ 𝐴. Hence the closure property is satisfied. 

Now since 𝑚 𝑥 ∈ 𝐴 and 𝐴∗ is a subgroup of 𝑋 then 𝑥 ∈ 𝐴∗ and there exist an element 𝑦 ∈ 𝐴∗ such that 

𝑥 ⊛2 𝑦 = 𝑦 ⊛2 𝑥 = 𝑒 but since 𝑦 ∈ 𝐴∗ then 𝑘 𝑦 ∈ 𝐴 𝑓𝑜𝑟 𝑘 > 0 then 

 𝑚 𝑥 ⊛ 𝑘 𝑦  = (𝑚 ⊛1 𝑘)  𝑥 ⊛2 𝑦  = 𝑚 ⊛1 𝑘/𝑒 = 𝑛/𝑒 (uniqueness of multiplicity axiom ). 

Thus for any  𝑚 𝑥 ∈ 𝐴 there exist 𝑘 𝑦 ∈ 𝐴 such that  𝑚 𝑥 ⊛ 𝑘 𝑦  = 𝑛/𝑒. 
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Let 𝑚 𝑥 , 𝑘 𝑦 , 𝑎𝑛𝑑 𝑟 𝑧 ∈ 𝐴, then we show that (𝑚 𝑥 ⊛ 𝑘 𝑦)  ⊛ 𝑟 𝑧   = [ 𝑚 ⊛1 𝑘)  𝑥 ⊛2 𝑦   ⊛ 𝑟 𝑧  =
 𝑚 ⊛1 𝑘 ⊛1 𝑟/ 𝑥 ⊛2 𝑦 ⊛2 𝑧  since 𝐴∗ is a subgroup  𝑥 ⊛2 𝑦 ⊛2 𝑧 = 𝑥 ⊛2 (𝑦 ⊛2 𝑧) therefore  

  𝑚 ⊛1 𝑘 ⊛1 𝑟/ 𝑥 ⊛2 𝑦 ⊛2 𝑧 = 𝑚 ⊛1 (𝑘 ⊛1 𝑟)/𝑥 ⊛2 (𝑦 ⊛2 𝑧). 

Thus  (𝑚 𝑥 ⊛ 𝑘 𝑦)  ⊛ 𝑟 𝑧   = 𝑚 ⊛1 (𝑘 ⊛1 𝑟)/𝑥 ⊛2 (𝑦 ⊛2 𝑧). 

However  𝑚 𝑥 ⊛ ( 𝑘 𝑦 ⊛ 𝑟 𝑧) = 𝑚 𝑥 ⊛   [(𝑘 ⊛1 𝑟)  𝑦 ⊛2 𝑧 ] = 𝑚 ⊛1 (𝑘 ⊛1 𝑟)/𝑥 ⊛2 (𝑦 ⊛2 𝑧)  

Since   𝑥 ⊛2 𝑦 ⊛2 𝑧 = 𝑥 ⊛2 (𝑦 ⊛2 𝑧)(𝐴∗ 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝) then  𝑚 ⊛1 𝑘 ⊛1 𝑟 = 8 = 𝑚 ⊛1 (𝑘 ⊛1 𝑟) 

uniqueness of multiplicity. 

Hence the result. 

The converse of this proposition need not hold, for example: 

Let  𝑋 = {1, −1, 𝑖, −𝑖} and  𝐴 = {4 1 , 1 −1 , 3 𝑖 , 2 −𝑖 }. 

The multigroup is not satisfied since  

𝐶𝐴 𝑖. 𝑖 = 𝐶𝐴 𝑖2 = 𝐶𝐴 −1 = 1 ≱ 𝐶𝐴 𝑖 ∧ 𝐶𝐴 𝑖 = min 3,3 = 3 

But the multiset group is satisfied since the axioms are satisfied on  𝐴.  

 

Proposition 3.2 (Generalisation of the intersection of multiset group) 3.2: Let 𝑆1 , 𝑆2 , 𝑆3 , … , 𝑆𝑛  be sub 

multiset groups of a multiset group𝐺.  Then their intersection⋂ 𝑆𝑖
𝑛
𝑖=1  is a sub multiset group.  

Proof: Let 𝑆1 , 𝑆2, 𝑆3 , … , 𝑆𝑛  be 𝑛 subgroup of 𝐺. Since 𝑆𝑖  is a subgroup. 

We want to show that if (𝑚 𝑥 ) ∈ 𝑆𝑖  and (𝑛 𝑦 ) ∈ 𝑆𝑖 . It implies that  (𝑚 𝑥 ) (𝑛 𝑦 )−1 ∈ 𝑆𝑖 . 

Also let  (𝑚 𝑥 ) ∈ 𝑆1, (𝑚 𝑥 ) ∈ 𝑆2,…,(𝑚 𝑥 ) ∈ 𝑆𝑛⇒(𝑚 𝑥 ) ∈ ⋂ 𝑆𝑖
𝑛
𝑖=1  

And (𝑛 𝑦 ) ∈ 𝑆1, (𝑛 𝑦 ) ∈ 𝑆2,…,(𝑛 𝑦 ) ∈ 𝑆𝑛⇒(𝑛 𝑦 ) ∈ ⋂ 𝑆𝑖
𝑛
𝑖=1 . That is  (𝑚 𝑥 ) (𝑛 𝑦 ) ∈ ⋂ 𝑆𝑖

𝑛
𝑖=1 . 

But since (𝑛 𝑦 ) ∈ ⋂ 𝑆𝑖
𝑛
𝑖=1 . Then there exist (𝑛 𝑦 )−1 ∈ ⋂ 𝑆𝑖

𝑛
𝑖=1  such that  (𝑚 𝑥 ) (𝑛 𝑦 )−1 ∈ ⋂ 𝑆𝑖

𝑛
𝑖=1 . 

Hence ⋂ 𝑆𝑖
𝑛
𝑖=1  is a sub multiset group. 

 

Proposition 3.3 (Generalisation of the union of multiset group) 3.3: Let 𝑆1 , 𝑆2, 𝑆3 , … , 𝑆𝑛  be sub multiset 

groups of a multiset group 𝐺.  Then ⋃ 𝑆𝑖
𝑛
𝑖=1  is a sub multiset group.  

Proof: From proposition 3.2.  It is clear that the union need not hold in general. 

 

Normal Sub Multiset Group. 

 

Definition 3.4: Let 𝐴 be a mset group and let 𝑆 be a sub mset group. We defined 𝑆 to be a normal sub mset 

group if (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 ∈ 𝑆 for any (𝑚 𝑥 ) ∈ 𝐴 and (𝑛 𝑦 ) ∈ 𝑆.  

This is also called invariant sub mset group or self-conjugate subgroup. 

The normal sub mset group 𝑆 of 𝐴 can be denoted as 𝑆 ⊴ 𝐴. Also 𝑆 is said to be a normal sub mset group of 𝐴 if 

(𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 ⊆ 𝑆 for every (𝑚 𝑥 ) ∈ 𝐴. 

For example: If 𝑆 is abelian then (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 = (𝑛 𝑦 ). That is  

(𝑚 𝑥 ) ⊛ (𝑛 𝑦 ) ⊛ (𝑚 𝑥 )−1 = (𝑛 𝑦 ) 

(𝑛 𝑦 ) ⊛ (𝑚 𝑥 ) ⊛ (𝑚 𝑥 )−1 = (𝑛 𝑦 ) 

(𝑛 𝑦 ) ⊛ (𝑛 𝑒 ) = (𝑛 𝑦 ) 

(𝑛 ⊛1 𝑛 𝑦 ⊛1 𝑒 ) = (𝑛 𝑦 ) 

That is (𝑚 𝑥 ) and (𝑛 𝑦 ) are said to be conjugate. 

Two sub mset groups  𝐵 and 𝐶 of 𝐴 are said to be conjugate if ∀ (𝑚 𝑥 ) ∈ 𝐵 and (𝑛 𝑦 ) ∈ 𝐶 such that  

(𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 = (𝑛 𝑦 ) 

 

Definition 3.5: Abelian mset group. Let 𝐴 be a mset group, then 𝐴 is said to be abelian if𝐴∗ is an abelian group 

and for all (𝑚 𝑥 ), (𝑛 𝑦 ) ∈ 𝐴, (𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ) (𝑚 𝑥 ). Abelian mset groups are also said to be 

commutative mset group. 

For example: Let 𝐺 = {1, −1} be a group under the multiplicative operation and let  

𝐴 = (2 1 , 2 −1 ) be a m-group. Then 𝐴 is abelian since𝐴∗ is commutative and  

2 1 ⊛ 2 −1 = 2 ⊛1 2 1 ⊛2− 1 = 2 −1   

2 −1 ⊛ 2 1 = 2 ⊛1 2 −1 ⊛2 1 = 2 −1   

Hence 𝐴 is an abelian mset group. 

 

Proposition 3.6: Every sub mset group of an abelian mset group is a normal sub mset group. 

Proof: Let 𝑆 be a sub m-group of a m-group 𝐴. We want to show that 𝑆 is a normal sub mset group, that is 

(𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 ∈ 𝑆 for all (𝑚 𝑥 ) ∈ 𝐴 and (𝑛 𝑦 ) ∈ 𝑆. 

Now (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 = (𝑛 𝑦 ) (𝑚 𝑥 ) (𝑚 𝑥 )−1 

= (𝑛 𝑦 ) (𝑛 𝑒 ), ∀ (𝑛 𝑦 ) ∈ 𝑆 
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Thus (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 ∈ 𝑆.  

Hence 𝑆 is a normal sub mset group of 𝐴. 

Conversely, for a normal sub mset group, we want to show that it is abelian 

(𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 = (𝑛 𝑦 ) 

By post multiplying    (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 (𝑚 𝑥 ) = (𝑛 𝑦 ) (𝑚 𝑥 ) 

(𝑚 𝑥 ) (𝑛 𝑦 ) (𝑛 𝑒 ) = (𝑛 𝑦 ) (𝑚 𝑥 ) 

(𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ) (𝑚 𝑥 ) 

Hence 𝑆 is abelian sub mset group of 𝐴 

 

Proposition 3.7: Let 𝑆 be a normal sub mset group of a mset group 𝐴 if and only if (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 = 𝑆. For 

every  (𝑚 𝑥 ) ∈ 𝐴. 

Proof: Let  𝐴 be a mset group and 𝑆 be a sub set group of 𝐴. 

We were given (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 = 𝑆 ∀ (𝑚 𝑥 ) ∈ 𝐴. We want to show that 𝑆 is a sub mset group of 𝐴. 

Now (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 = 𝑆 this implies that(𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 ⊆ 𝑆, since 𝑆 is a sub mset group of 𝐴. 

Conversely, let 𝑆 be a sub mset group of 𝐴. We want to show that 

 (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 = 𝑆  ∀ (𝑚 𝑥 ) ∈ 𝐴. 

Since 𝑆 is a normal sub mset group of 𝐴, then (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 ⊆ 𝑆 …  𝑖   ∀ (𝑚 𝑥 ) ∈ 𝐴. 

Now ∀ (𝑚 𝑥 ) ∈ 𝐴, there exist (𝑚 𝑥 )−1 ∈ 𝐴. Since 𝑆 is a normal sub mset group of 𝐴. 

(𝑚 𝑥 )−1𝑆[(𝑚 𝑥 )−1]−1 ⊆ 𝑆 by definition (𝑚 𝑥 )−1𝑆 (𝑚 𝑥 ) ⊆ 𝑆 

By pre multiplying (𝑚 𝑥 ) (𝑚 𝑥 )−1𝑆 (𝑚 𝑥 ) ⊆ (𝑚 𝑥 )𝑆 

(𝑛 𝑒 )𝑆 (𝑚 𝑥 ) ⊆ (𝑚 𝑥 )𝑆 

𝑆 (𝑚 𝑥 ) ⊆ (𝑚 𝑥 )𝑆 

By post multiplying  
𝑆 (𝑚 𝑥 ) (𝑚 𝑥 )−1 ⊆ (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 

And  
𝑆 (𝑛 𝑒 ) ⊆ (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 

𝑆 ⊆ (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 … (𝑖𝑖) 

From (i) and (ii) we have (𝑚 𝑥 )𝑆 (𝑚 𝑥 )−1 = 𝑆.  

Hence the result. 

 

Centre of Multiset Group. 

Definition 3.8: Let 𝐴 be a mset group over a group 𝑋. We defined the centre of 𝐴 denoted as  𝑍 𝐴 =
  𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑛 𝑦  ∈ 𝐴, (𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ) (𝑚 𝑥 ), (𝑚 𝑥 ) ∈ 𝐴}. Thus  𝑍 𝐴  is also said to be a normal sub 

mset group of 𝐴. 

For example: Let 𝑋 = {1, −1} and let 𝐴 = {3 1 , 2 −1  }, then 𝑍 𝐴 = 3 1 ⊛ 2 1 = 3 −1 = 2 −1 ⊛ 3 1 . 

 

Definition 3.9 (Commutator of mset group) 3.9: Let  𝐴 be a mset group over 𝑋 for all 𝑥, 𝑦 ∈ 𝑋, we defined 

the commutator of 𝐴 over 𝑋 as (𝑚 𝑥 )−1 (𝑛 𝑦 )−1 (𝑚 𝑥 ) (𝑛 𝑦 ), it is denoted by  (𝑚 𝑥  , (𝑛 𝑦 )]. 
Remark:  

(i) The mset commutator of mset group is a sub mset group over the said group. 

(ii) The sub mset group generated by the set of all mset commutators is called the commutators of 

mset group. 

 

Proposition 3.10: Let 𝐴 be a mset group over a group 𝑋, then the inverse of a commutator is a commutator. 

Proof: Let   (𝑚 𝑥  , (𝑛 𝑦 )] be a commutator, that is  (𝑚 𝑥  , (𝑛 𝑦 )] = (𝑚 𝑥 )−1 (𝑛 𝑦 )−1 (𝑚 𝑥 ) (𝑛 𝑦 ). We 

want to show that    (𝑚 𝑥  , (𝑛 𝑦 )]−1 is a commutator. 

Now  

 (𝑚 𝑥  , (𝑛 𝑦 )]−1 =  (𝑚 𝑥 )−1 −1 (𝑛 𝑦 )−1 −1((𝑚 𝑥 ))−1((𝑛 𝑦 ))−1 = (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 (𝑛 𝑦 )−1 =
(𝑚 𝑥 )−1 (𝑛 𝑦 )−1 (𝑚 𝑥 ) (𝑛 𝑦 ). 

Thus    (𝑚 𝑥  , (𝑛 𝑦 )]−1 is a commutator. 

 

Proposition 3.11: Let 𝐴 be a mset group over a group 𝑋. If 𝐴 is an abelian mset group, then the set of all mset 

commutators equals {1}. 

Proof: Suppose 𝑥, 𝑦 ∈ 𝑋 and (𝑚 𝑥 ) (𝑛 𝑦 ) ∈ 𝐴 and if   𝐴 is abelian, then  

(𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ) (𝑚 𝑥 ) and  

  (𝑚 𝑥  , (𝑛 𝑦 )] = (𝑚 𝑥 )−1 (𝑛 𝑦 )−1 (𝑚 𝑥 ) (𝑛 𝑦 ) = {1}. But the set of all commutators of 𝐴 is the sub mset 

group of 𝐴 and generated by {1}. Then the set of all commutators of 𝐴 = {1}. 
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Thus  (𝑚 𝑥  , (𝑛 𝑦 )] = (𝑚 𝑥 )−1 (𝑛 𝑦 )−1 (𝑚 𝑥 ) (𝑛 𝑦 ) = {1}. This implies that  

 (𝑚 𝑥 ). (𝑚 𝑥 )−1 (𝑛 𝑦 )−1 (𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑚 𝑥 ).1 

(𝑛 𝑦 ). (𝑛 𝑦 )−1 (𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ). (𝑚 𝑥 ) 

(𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ). (𝑚 𝑥 ) 

Thus 𝐴 is abelian and the set of all mset commutators equals {1}. 

 

Proposition 3.12: Let 𝐴 be a mset group over a group 𝑋. If 𝐴 is any mset group, then 𝑍(𝐴) is a normal sub mset 

group. 

Proof: Let 𝑍(𝐴) ≠ ∅, then (𝑛 𝑒 ) ∈ 𝑍(𝐴) since 
(𝑚 𝑥 ) (𝑛 𝑒 ) = (𝑛 𝑒 ). (𝑚 𝑥 ) 

Where 𝑒 is the identity element with multiplicity 𝑛, for all (𝑚 𝑥 ) ∈ 𝑍(𝐴). 

Now given 𝑚1 𝑥1 , 𝑚1 𝑥2  ∈ 𝑍(𝐴)  . Then (𝑚 𝑥 )  𝑚1 𝑥1  .  𝑚2 𝑥2  −1 =  (𝑚 𝑥  .  𝑚1 𝑥1  ] 𝑚2 𝑥2  −1 =
 𝑚1 𝑥1  [(𝑚 𝑥 ) 𝑚2 𝑥2  −1] =   𝑚1 𝑥1  .  𝑚2 𝑥2  −1 (𝑚 𝑥 ). 

Since (𝑚 𝑥 ) 𝑚2 𝑥2  =  𝑚2 𝑥2  (𝑚 𝑥 ), it implies  𝑚2 𝑥2  −1 (𝑚 𝑥 ) = (𝑚 𝑥 ) 𝑚2 𝑥2  −1. It follows that 

𝑍(𝐴) is a sub mset group of 𝐴. 

Also if (𝑚 𝑥 ) ∈ 𝐴 and  𝑚1 𝑥1  ∈ 𝑍(𝐴),  

(𝑚 𝑥 ) 𝑚1 𝑥1  =  𝑚1 𝑥1  (𝑚 𝑥 ) 

And so  𝑚1 𝑥1  =  𝑚 𝑥  −1 𝑚1 𝑥1  (𝑚 𝑥 ) 

Hence  𝑚 𝑥  −1 𝑚1 𝑥1  (𝑚 𝑥 ) ∈ 𝑍 𝐴  𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑚 𝑥 ) ∈ 𝐴 𝑎𝑛𝑑  𝑚1 𝑥1  ∈ 𝑍(𝐴). 

Thus 𝑍(𝐴) is a normal sub mset group of 𝐴. 

 

Proposition 3.13: Let 𝑀 be a mset group over a group 𝑋. Let 𝐴 be a sub mset group of 𝑀 and 𝐵 a normal sub 

mset group of 𝑀. Then 𝐴𝐵 is a sub mset group of  𝑀. 

We defined 𝐴𝐵 = {𝑧/𝑧 = (𝑚 𝑥 ) (𝑛 𝑦 ), ∀ (𝑚 𝑥 ) ∈ 𝐴 𝑎𝑛𝑑 (𝑛 𝑦 ) ∈ 𝐵 } . 

Proof: Let 𝐴𝐵 ≠ ∅, then (𝑛 𝑒 ) ∈ 𝐴𝐵, where 𝑒 is the identity element with multiplicity 𝑛, that is  (𝑛 𝑒 ) (𝑛 𝑒 ) ∈
𝐴𝐵 𝑓𝑜𝑟 (𝑛 𝑒 ) ∈ 𝐴 𝑎𝑛𝑑 (𝑛 𝑒 ) ∈ 𝐵. 

Now let 𝑧1 , 𝑧2 ∈ 𝐴𝐵 such that 𝑧1 =  𝑚1 𝑥1   𝑛1 𝑦1  , 𝑧2 =  𝑚2 𝑥2   𝑛2 𝑦2   where  𝑚𝑖 𝑥𝑖  ∈ 𝐴 and  𝑛𝑖 𝑦𝑖  ∈
𝐵. 

Then 𝑧1𝑧2
−1 =  𝑚1 𝑥1   𝑛1 𝑦1   𝑚2 𝑥2  −1 𝑛2 𝑦2  −1 

=  𝑚1 𝑥1   𝑛1 𝑦1   𝑛2 𝑦2  −1 𝑚2 𝑥2  −1 

=  𝑚1 𝑥1   𝑚2 𝑥2  −1( 𝑚2 𝑥2  −1)−1 𝑛3 𝑦3   𝑚2 𝑥2  −1 

=   𝑚1 𝑥1   𝑚2 𝑥2  −1 [ 𝑚2 𝑥2   𝑛3 𝑦3   𝑚2 𝑥2  −1] 
Thus [ 𝑚1 𝑥1   𝑚2 𝑥2  −1] ∈ 𝐴 is a sub mset group of 𝑀.  

[ 𝑚2 𝑥2   𝑛3 𝑦3   𝑚2 𝑥2  −1] ∈ 𝐵 a normal sub mset of 𝑀. 

Hence 𝑧1𝑧2
−1 ∈ 𝐴𝐵 is a sub mset group of 𝑀. 

 

Proposition 3.14: Let 𝑀 be a mset group over a group 𝑋. Let 𝐴 and 𝐵 be normal sub mset groups of 𝑀. Then 

𝐴 ∩ 𝐵 is a sub mset group of 𝑀. 

Proof: Since 𝐴 and 𝐵 are normal sub mset groups of 𝑀, then they are sub mset groups of 𝑀, that is for all 

(𝑚 𝑥 ), (𝑛 𝑦 ) ∈ 𝐴 and (𝑚 𝑥 ) (𝑛 𝑦 )−1 ∈ 𝐴, also same reason for 𝐵. That is  

(𝑚 𝑥 ) (𝑛 𝑦 )−1 ∈ 𝐴 ∩ 𝐵. We want to show that  𝐴 ∩ 𝐵 is  normal in 𝑀. 

Let  (𝑛 𝑦 ) ∈ 𝐴 ∩ 𝐵 and let (𝑚 𝑥 ) ∈ 𝑀. Since 𝐴 is a normal sub mset group of 𝑀. Then 

(𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 ∈ 𝐴 as (𝑛 𝑦 ) is in 𝐴, which implies 𝐴 is normal sub mset group of 𝑀. Also 

(𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 ∈ 𝐵 as (𝑛 𝑦 ) is in 𝐵, (𝑚 𝑥 ) ∈ 𝑀.  

Thus (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑚 𝑥 )−1 ∈ 𝐴 ∩ 𝐵. 

 

Definition (Centralizer) 3.15: Let  𝑀 be a mset group over a group 𝑋 and let  𝐴 be a submset group of 𝑀. We 

defined the centralizer denoted as 𝐶(𝐴) of 𝐴 in 𝑀, by 

 𝐶 𝐴 = {(𝑚 𝑥 ) ∣ (𝑚 𝑥 ) ∈ 𝑀  𝑎𝑛𝑑 (𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ) (𝑚 𝑥 ), (𝑛 𝑦 ) ∈ 𝐴}. 

 

Definition (Normalizer) 3.16: Let  𝑀 be a mset group over a group 𝑋 and let  𝐴 be a submset group of 𝑀. We 

defined the normalizer denoted as 𝑁(𝐴) of 𝐴 in 𝑀, by 

 𝑁 𝐴 = {(𝑛 𝑦 )/ (𝑛 𝑦 ) ∈ 𝑀  𝑎𝑛𝑑 𝐴 (𝑛 𝑦 ) = (𝑛 𝑦 )𝐴 𝑜𝑟 (𝑛 𝑦 )𝐴 (𝑛 𝑦 )−1 = 𝐴 }. 

 

Proposition 3.17: Let 𝐴 be a mset group over a group 𝑋. Then 𝑍(𝐴) is a sub mset group of 𝐴. 

Proof: Suppose 𝐴 ≠ ∅, then let (𝑛 𝑒 ) ∈ 𝐴 and 

 (𝑚 𝑥 ) (𝑛 𝑒 ) = (𝑛 𝑒 ) (𝑚 𝑥 ) = (𝑚 𝑥 ), ∀ (𝑚 𝑥 ) ∈ 𝐴.  
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Then (𝑛 𝑒 ) ∈ 𝑍(𝐴) and implies that  𝑍(𝐴) ≠ ∅. 

Now let  (𝑝 𝑟 ), (𝑞 𝑧 ) ∈ 𝑍(𝐴), then let  (𝑚 𝑥 ) (𝑝 𝑟 ) = (𝑝 𝑟 ) (𝑚 𝑥 ) and  

 (𝑚 𝑥 ) (𝑞 𝑧 ) = (𝑞 𝑧 ) (𝑚 𝑥 ) . 

We want to show that  (𝑝 𝑟 ) (𝑞 𝑧 )−1 ∈ 𝑍(𝐴). 

Since   (𝑚 𝑥 ) (𝑞 𝑧 ) = (𝑞 𝑧 ) (𝑚 𝑥 ), this implies that   

(𝑞 𝑧 )−1[(𝑚 𝑥 ) (𝑝 𝑟 )] (𝑞 𝑧 )−1 = (𝑞 𝑧 )−1[(𝑝 𝑟 ) (𝑞 𝑧 )] (𝑞 𝑧 )−1 

(𝑚 𝑥 ) (𝑞 𝑧 )−1 = (𝑞 𝑧 )−1 (𝑚 𝑥 ) ∀ (𝑚 𝑥 ) ∈ 𝐴 

To show  (𝑝 𝑟 ) (𝑞 𝑧 )−1 that is  (𝑝 𝑟 ) (𝑞 𝑧 )−1 (𝑚 𝑥 ) = (𝑚 𝑥 ) (𝑝 𝑟 ) (𝑞 𝑧 )−1 

 ∀ (𝑚 𝑥 ) ∈ 𝐴 

(𝑝 𝑟 )[(𝑞 𝑧 )−1 (𝑚 𝑥 )] = (𝑝 𝑟 )[(𝑚 𝑥 ) (𝑞 𝑧 )−1] 
= [(𝑝 𝑟 ) (𝑚 𝑥 )] (𝑞 𝑧 )−1 (𝑚 𝑥 ) 

⇒(𝑝 𝑟 ) (𝑞 𝑧 )−1 (𝑚 𝑥 ) = (𝑚 𝑥 ) (𝑝 𝑟 ) (𝑞 𝑧 )−1 

Thus (𝑝 𝑟 ) (𝑞 𝑧 )−1 ∈ 𝑍(𝐴). 

 

Proposition 3.18: The normalizer of a submset group 𝑀 of a mset group 𝐴 is a sub mset group of 𝑀. 

Proof: Let (𝑛 𝑒 ) ∈ 𝑀, where 𝑒 is the identity element. This implies that 

 (𝑛 𝑒 )𝐴 = 𝐴 (𝑛 𝑒 ) = 𝐴 which mean (𝑛 𝑒 ) ∈ 𝑁 𝐴   and so 𝑁(𝐴) ≠ ∅. 

Now let  (𝑚 𝑥 ), (𝑛 𝑦 ) ∈ 𝑁(𝐴), this implies that  

(𝑚 𝑥 )𝐴 (𝑚 𝑥 )−1 = 𝐴  and  (𝑛 𝑦 )𝐴 (𝑛 𝑦 )−1 = 𝐴, also if  

𝐴 = (𝑛 𝑦 )𝐴 (𝑛 𝑦 )−1 then 

(𝑚 𝑥 ) (𝑛 𝑦 )−1𝐴[(𝑚 𝑥 ) (𝑛 𝑦 )−1]−1 = (𝑚 𝑥 ) (𝑛 𝑦 )−1𝐴 (𝑛 𝑦 ) (𝑚 𝑥 )−1 

= (𝑚 𝑥 )𝐴 (𝑚 𝑥 )−1 = 𝐴 

This implies that  (𝑚 𝑥 ) (𝑛 𝑦 )−1 ∈ 𝑁(𝐴). 

Thus  𝑁(𝐴) is a sub mset group of 𝑀. 

 

Proposition 3.19: Let 𝐴 and 𝐵 be normal sub mset groups  of a mset group 𝑀 over the group 𝑋. If 𝐴𝐵 =
{(𝑚 𝑥 ) (𝑛 𝑦 ): (𝑚 𝑥 ) ∈ 𝐴, (𝑛 𝑦 ) ∈ 𝐵}, then 𝐴𝐵 is a sub mset group of 𝑀 and abelian. 

Proof:  Suppose  ∀ (𝑝 𝑟 ) ∈ 𝑀 we say (𝑝 𝑟 ) = (𝑝 𝑟 ) (𝑚 𝑥 ) (𝑝 𝑟 )−1.  

Also  ∀ (𝑞 𝑧 ) ∈ 𝑀 we say (𝑞 𝑧 ) = (𝑞 𝑧 ) (𝑛 𝑦 ) (𝑞 𝑧 )−1. 

Now we want to show that  𝐴𝐵 is a sub mset group of 𝑀. If  (𝑝 𝑟 ) (𝑞 𝑧 )−1 ∈ 𝑀, then  

(𝑝 𝑟 ) (𝑞 𝑧 )−1 = (𝑝 𝑟 ) (𝑚 𝑥 ) (𝑝 𝑟 )−1[(𝑞 𝑧 ) (𝑛 𝑦 ) (𝑞 𝑧 )−1]−1 

= (𝑝 𝑟 ) (𝑚 𝑥 ) (𝑝 𝑟 )−1 (𝑞 𝑧 )−1 (𝑛 𝑦 )−1((𝑞 𝑧 )−1)−1 

= (𝑝 𝑟 ) (𝑚 𝑥 ) (𝑝 𝑟 )−1 (𝑞 𝑧 )−1 (𝑛 𝑦 )−1 (𝑞 𝑧 ) 

= (𝑝 𝑟 ) (𝑞 𝑧 ) (𝑚 𝑥 ) (𝑛 𝑦 )−1 [(𝑝 𝑟 ) (𝑞 𝑧 )]−1 

Thus  (𝑚 𝑥 ) (𝑛 𝑦 )−1 = (𝑝 𝑟 ) (𝑞 𝑧 )−1 ∈ 𝑀 showing is a sub mset group. 

Also  (𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑝 𝑟 ) (𝑞 𝑧 ) (𝑚 𝑥 ) (𝑛 𝑦 ) (𝑝 𝑟 )−1 (𝑞 𝑧 )−1 

= (𝑝 𝑟 ) (𝑞 𝑧 ) (𝑚 𝑥 ) (𝑛 𝑦 ) [(𝑞 𝑧 )(𝑝 𝑟 )]−1 

= (𝑞 𝑧 ) (𝑝 𝑟 ) (𝑛 𝑦 ) (𝑚 𝑥 )[(𝑝 𝑟 ) (𝑞 𝑧 )]−1 

= (𝑛 𝑦 ) (𝑚 𝑥 ) 

Thus  (𝑚 𝑥 ) (𝑛 𝑦 ) = (𝑛 𝑦 ) (𝑚 𝑥 ) is abelian.  

 

Proposition 3.20: The conjugacy relation of a sub mset group 𝐴 of a mset group 𝑀 is an equivalence relation. 

Proof: Let the conjugacy relation be denoted ~. 

Now  ∀ (𝑚 𝑥 ), (𝑛 𝑦 ) ∈ 𝐴, if  (𝑚 𝑥 ) and  (𝑛 𝑦 ) are conjugates then  ∀ (𝑞 𝑧 ) ∈ 𝑀, then (𝑚 𝑥 ) =
(𝑞 𝑧 ) (𝑚 𝑥 ) (𝑞 𝑧 )−1 that is (𝑚 𝑥 )~ (𝑞 𝑧 ) (𝑚 𝑥 ) (𝑞 𝑧 )−1.  

Thus the relation is reflexive. 

Again, (𝑚 𝑥 ) = (𝑞 𝑧 ) (𝑛 𝑦 ) (𝑞 𝑧 )−1 that is (𝑚 𝑥 )~ (𝑞 𝑧 ) (𝑛 𝑦 ) (𝑞 𝑧 )−1. 

Thus the relation is symmetric. 

Also, ∀ (𝑚 𝑥 ), (𝑛 𝑦 ) 𝑎𝑛𝑑 (𝑝 𝑟 ) ∈ 𝐴 as conjugates point elements and  ∀ (𝑞 𝑧 ) ∈ 𝑀. 

Then   (𝑚 𝑥 ) = (𝑞 𝑧 ) (𝑛 𝑦 ) (𝑞 𝑧 )−1 that is (𝑚 𝑥 )~ (𝑞 𝑧 ) (𝑛 𝑦 ) (𝑞 𝑧 )−1 and  

(𝑛 𝑦 ) = (𝑞 𝑧 ) (𝑝 𝑟 ) (𝑞 𝑧 )−1 which implies that (𝑛 𝑦 )~ (𝑞 𝑧 ) (𝑝 𝑟 ) (𝑞 𝑧 )−1. Thus 

(𝑚 𝑥 ) = (𝑞 𝑧 )[(𝑞 𝑧 ) (𝑝 𝑟 ) (𝑞 𝑧 )−1] (𝑞 𝑧 )−1 = (𝑞 𝑧 ) (𝑝 𝑟 ) (𝑞 𝑧 )−1 that is  

(𝑚 𝑥 )~ (𝑞 𝑧 ) (𝑝 𝑟 ) (𝑞 𝑧 )−1 is transitive. 

Hence ~ is an equivalence relation. 
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4 Conclusions 
Tella and Daniel began the study of ‘multigroup’ and Nazmul et al build on what they have done.  Our 

study is a build-up from the perspective of Tripathy et al([16]) (on multiset group) which they termed 

as‘multiset group’. The foundation they laid gave an insight for the study of abelian multiset group. In the study 

we consider, introduced and study the normal sub multiset group, the centre of a multiset group, and the 

commutator of a multiset group. We first of all established the synergy and contrast between the definition of 

Nazmul et al, (2013) and that of Tripathy et al, (2018). On ‘Multigroup’ and ‘Multiset group’ respectively. 

Where we show that every multigroup is a multiset group but the converse need not true. Other aspects of group 

theory such as the conjugacy and the normal sub multiset group, the centralizer and the normalizer of nultiset 

group from the perspective of Tripathy, et al were studied and in all results were recorded. 
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