Reverse Symmetric Left *- n-Multiplier with Involution

Anwar KhaleelFaraj¹, Marwa H. Super²

¹Branch of Mathematics and Computer Applications, Applied Sciences Department/ University of Technology, Iraq ²¹Branch of Mathematics and Computer Applications, Applied Sciences Department/ University of Technology, Iraq

Abstract: In this paper, the symmetric left (right) reverse *-n-multiplier and reverse Jordan *-n-multiplier are presented and studied. Further, the commutativity and some related results in *-ring are considered.

Keywords: prime ring, semiprime ring, multiplier, Jordan centralizer, reverse multiplier

I. INTRODUCTION

Throughout this paper \mathcal{R} will represent an associative ring with center $Z(\mathcal{R})$. For any $u, y \in \mathcal{R}$, the commutator uy - yu is denoted by [u, y] and the anti-commutator $u \circ y$ is denoted by uy + yu [1]. A ring \mathcal{R} is said to be n-torsion free if na=0 with $a \in \mathcal{R}$ then a=0, where n is nonzero integer [2]. Recall that a ring \mathcal{R} is said to be prime if $a\mathcal{R}b=0$ implies that either a=0 or b=0 for all $a,b\in\mathcal{R}$, and it is semiprime if $a\mathcal{R}a=0$ implies that a=0 for all $a \in \mathcal{R}$ [3]. An additive mapping $u \to u^*$ of \mathcal{R} into itself is called an involution if the following conditions are satisfied (i) $(uy)^*=y^*u^*$ (ii) $(u^*)^*=u$ for all $u, y \in \mathcal{R}$ and \mathcal{R} is called a *-ring [4]. In [5], Zalar introduced the term of centralizer (multiplier) and the author proved many results concerning multiplier; an additive mapping \mathcal{M} is called left (resp. right) multiplier if $\mathcal{M}(uy) = \mathcal{M}(u)y$ (resp. $\mathcal{M}(uy) = u\mathcal{M}(y)$) holds for all $u, y \in \mathcal{R}$, and \mathcal{M} is called a multiplier if it is a left and right multiplier. Further, an additive mapping $\mathcal{M}: \mathcal{R} \to \mathcal{R}$ is called a left (resp. right) Jordan multiplier in case that $\mathcal{M}(u^2) = \mathcal{M}(u)u$ (resp. $\mathcal{M}(u^2) = \mathcal{M}(u)u$) $u \mathcal{M}(u)$ holds for $u \in \mathcal{R}$ [6]. In 1991, Zalar proved that for a 2-torsion free semiprime ring every left (right) Jordan multiplier is a left (right) multiplier. An additive mapping $u \to u^*$ satisfying $(\mathcal{M}(uy)^* = \mathcal{M}(u)y^*)$ $(\text{resp.}\mathcal{M}(uy)^* = u^*\mathcal{M}(y))$ for all $u, y \in \mathcal{R}$ is called *-multipliers. A left (right) Jordan multiplier is an additive mapping $\mathcal{M}: \mathcal{R} \to \mathcal{R}$ which satisfies $\mathcal{M}(u^2) = \mathcal{M}(u)u^*$ (resp. $\mathcal{M}(u^2) = u^* \mathcal{M}(u)u, v \in \mathcal{R}$. In [7], the authors were introduced the concept of reverse *-multipliers (centralizer) of *-ring $\mathcal R$ is an additive mapping $\mathcal{M}:\mathcal{R}\to\mathcal{R}$ which satisfies $\mathcal{M}(u\gamma)=\mathcal{M}(\gamma)v^*$ for all $u,\gamma\in\mathcal{R}$. Recently there has been a great deal of work done by many authors on this topic on prime rings and semiprime rings, see ([8], [9]). In [10] The notion of a *-multiplier of \mathcal{R} was studied. Many authors have proved the commutativity of prime and semiprime rings admitting multiplier ([11], [12], [13]). This paper is organized as follows. Section 2 is devoted to recalling some mathematical preliminaries and fundamental facts of reverse *-n-multiplier and reverse Jordan *-n-multiplier. Section 3 presents the commutativity and some related results in *-ring.

II. PRELIMINARIES

Some definitions and fundamental facts of reverse *-n-multipliers and reverse Jordan *-n-multiplier. Throughout this paper consider n is a fixed positive integer.

Proposition 2.1 [2]

Let \mathcal{R} be a ring, then for all $u, \gamma, z \in \mathcal{R}$ we have

- 1- $[u, \gamma z] = \gamma [u, z] + [u, \gamma] z$
- 2- $[u\gamma, z] = u[\gamma, z] + [u, z]\gamma$
- 3- $u \circ (\gamma z) = (u \circ \gamma)z \gamma[u, z] = \gamma(u \circ z) + [u, \gamma]z$
- 4- $(u\gamma) \circ z = u(\gamma \circ z) [u, z]\gamma = (u \circ z)\gamma + u[\gamma, z]$

Definition 2.2 [6]

A map $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ is called permuting (or symmetric) if the equation $\mathcal{M}(u_1, u_2, ..., u_n) = \mathcal{M}(u_{\pi(1)}, u_{\pi(2)}, ..., u_{\pi(n)})$ holds, for all $u_i \in \mathcal{R}$ and for every permutation $\{\pi(1), \pi(2), ..., \pi(n)\}$.

Lemma 2.3 [7]

Let \mathcal{R} be a semiprime *-ring and $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ and $a \in \mathcal{R}$ be fixed element If $au - ua \in Z(\mathcal{R})$ for all $u \in \mathcal{R}$ then we have $a \in Z(\mathcal{R})$.

Now, the concepts of reverse *-n-multiplier and reverse Jordan *-n-multiplier can be presented to get our main results.

ISSN: 2455-4847

www.ijlemr.com || Volume 05 - Issue 07 || July 2020 || PP. 58-63

Definition 2.4

An *n*-additive mapping $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ is said to be left reverse *-*n*-multiplier if the following equations hold for all $u_1 y, u_2, ..., u_n \in \mathcal{R}$:

$$\mathcal{M}_1(u_1 y, u_2, \dots, u_n) = \mathcal{M}_1(y, u_2, \dots, u_n) u_1^*$$
 $\mathcal{M}_2(u_1, u_2 y, \dots, u_n) = \mathcal{M}_2(u_1, y, \dots, u_n) u_2^*$
.

 $\mathcal{M}_n(u_1, u_2, \dots, u_n y) = \mathcal{M}_n(u_1, u_2, \dots, y)u_n^*$

 \mathcal{M} is said to be a symmetric left (resp. right) reverse *n*-multiplier if all the above equations are equivalent to each other. That is, $\mathcal{M}(u_1 y, u_2, \dots, u_n) = \mathcal{M}(y, u_2, \dots, u_n) u_1^* (\mathcal{M})$

 $(u_1 y, u_2, ..., u_n) = y * \mathcal{M}(u_1, u_2, ..., u_n)$ for all $y, u_1, u_2, ..., u_n \in \mathcal{R}$.

The following example explains the above definitions:

Example 2.5

Consider $\mathcal{R} = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$, where \mathbb{C} is the ring of complex numbers. Clearly, \mathcal{R} is a non-

commutative ring under the usual addition and multiplication of matrices. A map $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ is defined by

$$\mathcal{M} \left(\begin{pmatrix} 0 & a_1 & b_1 \\ 0 & 0 & c_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 & b_2 \\ 0 & 0 & c_2 \\ 0 & 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_n & b_n \\ 0 & 0 & c_n \\ 0 & 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 & c_1c_2 \dots c_n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \;, \quad \text{for all} \; \begin{pmatrix} 0 & a_1 & b_1 \\ 0 & 0 & c_1 \\ 0 & 0 & 0 \end{pmatrix} \;, \\ \begin{pmatrix} 0 & a_2 & b_2 \\ 0 & 0 & c_2 \\ 0 & 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_n & b_n \\ 0 & 0 & c_n \\ 0 & 0 & 0 \end{pmatrix}$$

$$\in \mathcal{R} \text{such that} \begin{pmatrix} 0 & a & b \\ 0 & 0 & c_n \\ 0 & 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & c & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}.$$

Then, \mathcal{M} is a symmetric reverse left *-n-multipliers and also it is a reverse right *-n-multiplier.

Now, the concept of symmetric reverse Jordan*-n-multiplier is introduced as the following

Definition 2.6

An *n*-additive symmetric mapping $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ is said to be a symmetric reverse Jordan *- *n*-multiplier in case :

 $\mathcal{M}(u_1^2, u_2, ..., u_n) = \mathcal{M}(u_1, u_2, ..., u_n) u_1^* \text{ holds for all } u_1, u_2, ..., u_n \in \mathcal{R}$

The following example explains the notion of be a symmetric reverse Jordan *- n- multiplier

Example 2.7

Consider the ring $\mathcal{R} = \left\{ \begin{pmatrix} u & y \\ 0 & 0 \end{pmatrix} \mid u, y \in \mathbb{R} \right\}$ where \mathbb{R} is the ring of real numbers. Define $\mathcal{M} : \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \rightarrow \mathcal{R}$ by

$$\mathcal{M}\left(\begin{pmatrix} u_1 & u_1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} u_2 & y_2 \\ 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} u_n & y_n \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 0 & u_1u_2\dots u_n \\ 0 & 0 \end{pmatrix}, \text{ for all } \begin{pmatrix} u_1 & u_1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} u_2 & y_2 \\ 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} u_n & y_n \\ 0 & 0 \end{pmatrix} \in \mathcal{R}.$$

Further, * is defined by $\begin{pmatrix} u & y \\ 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & 0 \\ 0 & u \end{pmatrix}$, this means that \mathcal{M} is a symmetric reverse Jordan left* n- multiplier.

III. THE MAIN RESULTS

In [7] and [13], many results of symmetric reverse *-multiplier of prime and semiprime ring with involution are proved. In this paper, these results are studied by using the concept of symmetric reverse *-n-multipliers on $\mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R}$.

We begin by generalizing the following [14, Theorem 2.1] to use some of the results of this paper:

Theorem 3.1

Let \mathcal{R} be a 2-torsion free semiprime ring. If $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ is a n-additive mapping such that $\mathcal{M}(u\gamma u, u_2, ..., u_n) = \mathcal{M}(u, u_2, ..., u_n)\gamma u$ for all $\gamma, u, u_2, ..., u_n \in \mathcal{R}$. Then \mathcal{M} is a symmetric left n-multiplier on \mathcal{R} .

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 05 - Issue 07 || July 2020 || PP. 58-63

Proof:

By assumption,

... (1) $\mathcal{M}(u\gamma u, u_2, \dots, u_n) = \mathcal{M}(u, u_2, \dots, u_n) \gamma u.$

Substituting u = u + z in Equation (1), then

 $\mathcal{M}((u+z)\gamma(u+z), u_2, \dots, u_n) = \mathcal{M}(u, u_2, \dots, u_n)\gamma u + \mathcal{M}(u, u_2, \dots, u_n)\gamma z + \mathcal{M}(z, u_2, \dots, u_n)\gamma u + \mathcal{M}(z, u$ $\mathcal{M}(z, u_2, ..., u_n) \gamma z$.

On the other hand, $\mathcal{M}((u+z)\gamma(u+z), u_2, ..., u_n) = \mathcal{M}((u\gamma u + u\gamma z + z\gamma u + z\gamma z, u_2, ..., u_n)) = \mathcal{M}(u\gamma z + z\gamma z, u_2, ..., u_n)$ $z\gamma u, u_2, \dots, u_n$)+ $\mathcal{M}(u, u_2, \dots, u_n)\gamma u$ + $\mathcal{M}(z, u_2, \dots, u_n)$(3)

Combining Equations (2) and (3) we have

 $\mathcal{M}(\mathsf{u} \mathsf{\gamma} \mathsf{z} + \mathsf{z} \mathsf{\gamma} \mathsf{u}, u_2 \,, \ldots, u_n) = \mathcal{M}(\mathsf{u}, u_2 \,, \ldots, u_n) \, \mathsf{\gamma} \mathsf{z} + \mathcal{M}(\mathsf{z}, u_2 \,, \ldots, u_n) \, \mathsf{\gamma} \mathsf{u} \text{ for all } \mathsf{z}, \mathsf{\gamma}, u, u_2 \,, \ldots, u_n \in \mathcal{R}. \ldots (4)$ Let $z = u^2$ in Equation (4) to get

 $\mathcal{M}(u_{\gamma}u^{2} + u^{2}\gamma u_{1}u_{2}, ..., u_{n}) = \mathcal{M}(u_{1}u_{2}, ..., u_{n})\gamma u^{2} + \mathcal{M}(u^{2}, u_{2}, ..., u_{n})\gamma u.$... (5)

Now, replacing γ by $u\gamma + \gamma u$ in Equation (1) and using it to get

 $\mathcal{M}(u(u\gamma + \gamma u)u, u_2, \dots, u_n) = \mathcal{M}(u, u_2, \dots, u_n)u\gamma u + \mathcal{M}(u, u_2, \dots, u_n)\gamma u^2 \dots (6)$

Now, combining Equations (6) and (5) will get

 $\mathcal{M}(\mathbf{u}^2, u_2, \dots, u_n)\gamma u - \mathcal{M}(u, u_2, \dots, u_n)u\gamma u = 0$

Let $\mathcal{A}(u) = \mathcal{M}(u^2, u_2, \dots, u_n) - \mathcal{M}(u, u_2, \dots, u_n)u$, then $\mathcal{A}(u)\gamma u = 0 \dots (8)$

Replacing γ by uzA(u) in Equation (8) will get

 $\mathcal{A}(u)uz\mathcal{A}(u)u=0$, hence $\mathcal{A}(u)u\mathcal{R}\mathcal{A}(u)u=0$... (9)

Since \mathcal{R} is a semiprime then $\mathcal{A}(u)u=0$... (10)

Now, let $u = u + \gamma$ in Equation (10) we have

 $0 = \mathcal{A}(u)u + \mathcal{A}(\gamma)u + \mathcal{A}(u)\gamma + \mathcal{A}(\gamma)\gamma$... (11)

Now, we compute $\mathcal{A}(u + \gamma) =$

 $\gamma u, u_2, \dots, u_n$) $-\mathcal{M}(u, u_2, \dots, u_n)\gamma -\mathcal{M}(y, u_2, \dots, u_n)u \dots (12)$

Let $\mathcal{B}(\mathbf{u}, \mathbf{\gamma}) = \mathcal{M}(\mathbf{u}\mathbf{\gamma} + \mathbf{\gamma}\mathbf{u}, \mathbf{u}_2, \dots, \mathbf{u}_n) - \mathcal{M}(\mathbf{u}, \mathbf{u}_2, \dots, \mathbf{u}_n)\mathbf{\gamma} - \mathcal{M}(\mathbf{y}, \mathbf{u}_2, \dots, \mathbf{u}_n)\mathbf{u}$ Then, we have from Equation (12)

 $\mathcal{B}(u,\gamma) + \mathcal{A}(u) + \mathcal{A}(\gamma)$, for all $u, \gamma \in \mathcal{R}$. From Equation (11) implies that

 $\mathcal{B}(u,\gamma)u+\mathcal{A}(u)u+\mathcal{A}(\gamma)u+\mathcal{B}(u,\gamma)\gamma+\mathcal{A}(u)\gamma+\mathcal{A}(\gamma)\gamma=0$

By Equation (10), $\mathcal{A}(u)\gamma + \mathcal{B}(u,\gamma)u + \mathcal{A}(\gamma)u + \mathcal{B}(u,\gamma)\gamma = 0$.

... (13)

Now, let u = -u in Equation (13) we get $\mathcal{A}(u)\gamma + \mathcal{B}(u,\gamma)u - \mathcal{A}(\gamma)u - \mathcal{B}(u,\gamma)\gamma = 0$ (14) Adding Equations (13) with (14) and using the fact that \mathcal{R} is a 2-torsion free semiprime ring we find that

 $\mathcal{A}(\mathbf{u})\mathbf{y} + \mathcal{B}(\mathbf{u},\mathbf{y})\mathbf{u} = 0.$... (15)

Right multiplication of Equation (15) by $\mathcal{A}(u)$ to get $\mathcal{A}(u)\gamma\mathcal{A}(u)+\mathcal{B}(u,\gamma)u\mathcal{A}(u)=0...$ (16)

From Equation (10) we have, $uA(u)\gamma uA(u)=0$. Then

 $u\mathcal{A}(u)\mathcal{R}u\mathcal{A}(u)=0.$... (17)

Also, $u\mathcal{A}(u)=0$.

From Equation (16) and by using Equation (18) will get $\mathcal{A}(u)\gamma\mathcal{A}(u)=0$ that $\mathcal{A}(u)\mathcal{R}\mathcal{A}(u)=0$, then $\mathcal{A}(u)=0$ and this means

 $\mathcal{M}(u^2, u_2, ..., u_n) = \mathcal{M}(u, u_2, ..., u_n)u$. Therefore, \mathcal{M} is a Jordan left n- multiplier and \mathcal{M} is a left n-multiplier on

In Theorem 3.1, Substituting y = u, then we obtain the following

Corollary 3.2

Let \mathcal{R} be a 2-torsion free semiprime ring If $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ is a *n*-additive mapping such that $\mathcal{M}(u^3, u_2, ..., u_n) = \mathcal{M}(u, u_2, ..., u_n)u^2$ for all $u, u_2, ..., u_n \in \mathcal{R}$. Then \mathcal{M} is a symmetric left n-multiplier on \mathcal{R} .

Lemma 3.3

Let \mathcal{R} be a semiprime *-ring, $a \in \mathcal{R}$ be a fixed element and $\mathcal{M}(u, u_2, ..., u_n) = a u^* + u^* a$ satisfy $\mathcal{M}(uoy, u_2 \dots, u_n) = \mathcal{M}(u, u_2 \dots, u_n)oy = u \circ \mathcal{M}(y, u_2 \dots, u_n)$ for all $y, u, u_2 \dots, u_n \in \mathcal{R}$. Then $a \in \mathbb{Z}(\mathcal{R})$.

$$\mathcal{M}(uoy, u_2, \dots, u_n) = \mathcal{M}(u, u_2, \dots, u_n) oy^* = u^* o \mathcal{M}(y, u_2, \dots, u_n).$$
 ...(1)

By hypothesis $\mathcal{M}(u, u_2, \dots, u_n) = a u^* + u^* a$, one has $\mathcal{M}(uoy, u_2, \dots, u_n) = (a u^* + u^* a)y^* + y^* (a u^*$ *a*).

Let u = uy + yu in hypothesis relation to get

 $\mathcal{M}(uoy, u_2, \dots, u_n) = a(uy + yu) * + (uy + yu) * a.$... (3)

Then, by Equations (1) and (2), one has

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 05 - Issue 07 || July 2020 || PP. 58-63

```
ay * u * + u * y * a - u * ay * -y * au * = 0
```

Hence, (ay * -y * a)u * +u * (y * a - ay *) = 0 and this implies that [[a, y *], u *] = 0 Applying Lemma (2.3) will get $a \in Z(\mathcal{R})$.

Lemma 3.4

Let \mathcal{R} be a semiprime*-ring. Then, every mappings \mathcal{M} of \mathcal{R} satisfy \mathcal{M} ($uoy, u_2, ..., u_n$) = $\mathcal{M}(u, u_2, ..., u_n)$ oy*= $u * o\mathcal{M}(y, u_2, ..., u_n)$ for all $y, u, u_2, ..., u_n \in \mathcal{R}$. Then, \mathcal{M} maps $Z(\mathcal{R})$ into Z(R).

Proof

Theorem 3.5

Let \mathcal{R} is a 2-torsion free semiprime *-ring, and $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ is an n-additive mapping which satisfies $\mathcal{M}(uoy, u_2, ..., u_n) = \mathcal{M}(u, u_2, ..., u_n) oy *= u * o \mathcal{M}(y, u_2, ..., u_n)$ for all $y, u, u_2, ..., u_n \in \mathcal{R}$. Then, \mathcal{M} is a reverse *-n-multiplier of \mathcal{R} .

Proof:

```
Notice that \mathcal{M}(uoy, u_2, \dots, u_n) = \mathcal{M}(u, u_2, \dots, u_n)oy * u * o\mathcal{M}(y, u_2, \dots, u_n)\mathcal{M}(uy + yu, u_2, \dots, u_n)
= \mathcal{M}(u, u_2, \dots, u_n)y * + y * \mathcal{M}(u, u_2, \dots, u_n) = \mathcal{M}(y, u_2, \dots, u_n)u * + u * \mathcal{M}(y, u_2, \dots, u_n).
Replacing y = uoy in the last relation, one will have
\mathcal{M}(u, u_2, \dots, u_n)(uy + yu) * + (uy + yu) * \mathcal{M}(u, u_2, \dots, u_n)
= \mathcal{M}(u, u_2, ..., u_n) y^* u^* + y^* \mathcal{M}(u, u_2, ..., u_n) u^* + u^* \mathcal{M}(u, u_2, ..., u_n) y^* + u * y * \mathcal{M}(u, u_2, ..., u_n)
                  implies that \mathcal{M}(u, u_2, ..., u_n)u * y * + y * u * \mathcal{M}(u, u_2, ..., u_n) = y * \mathcal{M}(u, u_2, ..., u_n)u * + u *
\mathcal{M}(u, u_2, \dots, u_n)y *.
Then, \mathcal{M}(u, u_2, \dots, u_n) o (u \circ y) *= (\mathcal{M}(u, u_2, \dots, u_n) \circ y *)u *.
Also, one will get, [\mathcal{M}(u, u_2, \dots, u_n), u *] y *= y * [\mathcal{M}(u, u_2, \dots, u_n), u *]
The following is obtained [\mathcal{M}(u, u_2 \dots, u_n), u^*] \in Z(\mathcal{R}).
Now, one will show that [\mathcal{M}(u, u_2, ..., u_n), u^*] = 0, and let c \in Z(\mathcal{R}) one gets 2\mathcal{M}(cu, u_2, ..., u_n) = \mathcal{M}(cu + u_n)
uc, u_2, ..., u_n) = \mathcal{M}(c, u_2, ..., u_n)u * + u * \mathcal{M}(c, u_2, ..., u_n) = 2 \mathcal{M}(u, u_2, ..., u_n)c *. By using Lemma (3.4),
the result is \mathcal{M}(cu, u_2, ..., u_n) = \mathcal{M}(u, u_2, ..., u_n)c *= \mathcal{M}(c, u_2, ..., u_n)u *. Also, for all c \in Z(\mathcal{R}), one takes
[\mathcal{M}(u, u_2, ..., u_n), u *]c * = \mathcal{M}(u, u_2, ..., u_n)u * c * -u * \mathcal{M}(u, u_2, ..., u_n)c * = \mathcal{M}(u, u_2, ..., u_n)c * u * -u *
 \mathcal{M}(u, u_2, \dots, u_n)c *= \mathcal{M}(c, u_2, \dots, u_n)u^{*2} - u * \mathcal{M}(c, u_2, \dots, u_n)u^{*2}
= \mathcal{M}(c, u_2, ..., u_n)u * u * - u * \mathcal{M}(c, u_2, ..., u_n)u * = [\mathcal{M}(c, u_2, ..., u_n), u *]u * \text{ for all } c \in Z(\mathcal{R}), \text{ also one}
                                                                                                                                                                     = \mathcal{M}(c, u_2, \dots, u_n)u * u * - \mathcal{M}(c, u_2, \dots, u_n)u * u *
                           \mathcal{M}(c, u_2, \dots, u_n) \in Z(\mathcal{R})
                                                                                                                                        then
=\mathcal{M}(c, u_2..., u_n)u^{*2} - \mathcal{M}(c, u_2..., u_n)u^{*2}
On other hand, one will show that,
2 \quad \mathcal{M}(u^2, u_2, ..., u_n) = \mathcal{M}(uu + uu, u_2, ..., u_n) = \mathcal{M}(u, u_2, ..., u_n)u * + u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M}(u, u_2, ..., u_n) = 2 \quad u * \mathcal{M
\mathcal{M}(u, u_2, \dots, u_n) = 2 \mathcal{M}(u, u_2, \dots, u_n)u *
```

Theorem 3.6

Assume that \mathcal{R} be a 2-torsion free semiprime ring with an identity element, $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ be an n-additive mapping such that $\mathcal{M}(u^3, u_2, ..., u_n) = u * \mathcal{M}(u, u_2, ..., u_n)u *$. Then, \mathcal{M} is a reverse *-n-multiplier, that is $\mathcal{M}(uy, u_2, ..., u_n) = \mathcal{M}(y, u_2, ..., u_n)u *= y * \mathcal{M}(u, u_2, ..., u_n)$ for all $y, u_1, u_2, ..., u_n \in \mathcal{R}$.

Proof:

Since
$$\mathcal{M}(u^3, u_2, ..., u_n) = u * \mathcal{M}(u, u_2, ..., u_n)u *.$$
 ... (1)

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 05 - Issue 07 || July 2020 || PP. 58-63

Multiply involution both sides to Equation (1) to get the following $\mathcal{M}(u^3, u_2, \dots, u_n) * = u \mathcal{M}(u, u_2, \dots, u_n) * u$ for all u, $u_2, \dots, u_n \in \mathcal{R}$.

Suppose that $F: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \rightarrow \mathcal{R}$, then one has

 $F(u, u_2, ..., u_n) = (\mathcal{M}(u, u_2, ..., u_n)) *$, and also we get $F(u^3, u_2, ..., u_n) = (\mathcal{M}(u^3, u_2, ..., u_n)) * = (u * \mathcal{M}(u, u_2, ..., u_n)) * = u (\mathcal{M}(u, u_2, ..., u_n)) * = u F(u, u_2, ..., u_n) u$

Now, by using Corollary 3.1 we have F is n -multiplier $F(uy, u_2, ..., u_n) = F(u, u_2, ..., u_n)u$. Then,

 $(\mathcal{M}(uy, u_{2,...}, u_{n})) *= F(uy, u_{2,...}, u_{n}) = uF(y, u_{2,...}, u_{n}) = u(\mathcal{M}(y, u_{2,...}, u_{n})) * for all y, u, u_{2,...}, u_{n} \in \mathcal{R}.$... (2)

Also,

Multiply involution both sides to Equations (2) and (3) to get $\mathcal{M}(uy, u_2, ..., u_n) = \mathcal{M}(y, u_2, ..., u_n)u * = y * \mathcal{M}(u, u_2, ..., u_n)$.

Theorem 3.7

Let \mathcal{R} be a semiprime ring, and $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ be additive mapping such that $\mathcal{M}(u, u_2, ..., u_n)y *= u * \mathcal{M}(y, u_2, ..., u_n)$ for all $y, u, u_2, ..., u_n \in \mathcal{R}$. Then, \mathcal{M} is a reverse left *-n-multiplier of \mathcal{R} .

Proof:

Notice that $\mathcal{M}(u, u_2, \dots, u_n)$ $y *= u * \mathcal{M}(y, u_2, \dots, u_n)$ (1)

Calculating the following equation and by Equation (1), we have

$$0=\mathcal{M}(u+y,u_{2,...},u_{n})z*-\mathcal{M}(u,u_{2,...},u_{n})z*-\mathcal{M}(y,u_{2,...},u_{n})z*$$

$$=(u+y)*\mathcal{M}(z,u_{2,...},u_{n})-u*\mathcal{M}(z,u_{2,...},u_{n})-y*\mathcal{M}(z,u_{2,...},u_{n})$$

$$=(u+y)*-u*-y*(\mathcal{M}(z,u_{2,...},u_{n}))$$

$$= u * + y * - u * - y * (\mathcal{M}(z, u_2, ..., u_n))$$

This implies that $(\mathcal{M}(u+y,u_2,\ldots,u_n)-\mathcal{M}(u,u_2,\ldots,u_n)-\mathcal{M}(y,u_2,\ldots,u_n))z *= 0.$... (2)

Now, let z *= z in Equation (2) to get

 $(\mathcal{M}(u+y,u_2,...,u_n) - \mathcal{M}(u,u_2,...,u_n) - \mathcal{M}(y,u_2,...,u_n))z=0$ for all $y, u, u_2,...,u_n \in \mathcal{R}$ (3)

Since \mathcal{R} is semiprime ring, one obtains that $\mathcal{M}(u+y,u_2,\ldots,u_n)=\mathcal{M}(u,u_2,\ldots,u_n)+\mathcal{M}(y,u_2,\ldots,u_n)$. Similarly, one calculates the relation $(\mathcal{M}(uy,u_2,\ldots,u_n)-\mathcal{M}(u,u_2,\ldots,u_n)y*)z*$, then \mathcal{M} is a reverse left *-n-multiplier of \mathcal{R} .

Theorem 3.8

Let \mathcal{R} be a 2-torsion free semiprime ring, and $\mathcal{M}: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}$ be a Jordan left *-n-multiplier. Then, \mathcal{M} is a reverse left *-n-multiplier, which is $\mathcal{M}(uy, u_2, ..., u_n) = \mathcal{M}(y, u_2, ..., u_n)u^*$ for all $y, u_1, u_2, ..., u_n \in \mathcal{R}$.

Proof:

Since $\mathcal{M}(uy, u_2, \dots, u_n) = \mathcal{M}(y, u_2, \dots, u_n)u *$ (1)

Substituting y = u in to Equation (1) and by applying involution the both sides to get the following:

 $(\mathcal{M}(u^2, u_2, \dots, u_n)) *= u\mathcal{M}(u, u_2, \dots, u_n) * \text{ for all } u, u_2, \dots, u_n \in \mathcal{R}$

Suppose that $F: \mathcal{R} \times \mathcal{R} \times ... \times \mathcal{R} \to \mathcal{R}, F(u, u_2, ..., u_n) = (\mathcal{M}(u, u_2, ..., u_n))^*$.

This implies that $F(u^2, u_2, ..., u_n) = (\mathcal{M}(u^2, u_2, ..., u_n)) *$

= $(\mathcal{M}(u, u_2, ..., u_n) u *) *= u (\mathcal{M}(u, u_2, ..., u_n)) *= u F(u, u_2, ..., u_n)$. Thus F is a Jordan right n-multiplier on \mathcal{R} .

That is, $F(uy, u_2, ..., u_n) = u\mathcal{M}(y, u_2, ..., u_n)$ for all $y, u, u_2, ..., u_n \in \mathcal{R}$. So, we have, $(\mathcal{M}(uy, u_2, ..., u_n)) * = F(uy, u_2, ..., u_n) = u F(y, u_2, ..., u_n) = u (\mathcal{M}(y, u_2, ..., u_n)) *$ (2) Also $(\mathcal{M}(uy, u_2, ..., u_n)) * = u (\mathcal{M}(y, u_2, ..., u_n)) *$

When applying involution to both sides of the above relation, then $\mathcal{M}(uy, u_2, ..., u_n) = \mathcal{M}(y, u_2, ..., u_n)u *$ for all $y, u_1, u_2, ..., u_n \in \mathcal{R}$.

www.ijlemr.com || Volume 05 - Issue 07 || July 2020 || PP. 58-63

REFERENCES

- [1] S. Ali and N. A. Dar, On centralizers of prime rings with involution, *Bull. Iranian Math. Soc.41*(6), 2015, 1465–1475.
- [2] V. Joso, On centralizers of semiprime rings, Aequations Math, 66, 2003, 277-283.
- [3] I.N. Herstein, *Topics in ring theory*, the University of Chicago Press, Chicago, 1969.
- [4] M.Ashraf and M. A. Siddeeque, On*-n-derivations in rings with involution, *Georgian Math. J.*, 22(1), 2015, 9–18.
- [5] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae, 32, 1991, 609–614.
- [6] M. Ashraf and M. R. Mozumder, On Jordan centralizers in semiprime rings with involution, *Int. J. Contemp. Math. Sciences*, 7(23), 2012, 1103-1112.
- [7] H.M Abd-Al-Rahman. and A. A. AL-Taay, On reverse *-Centralizer of prime and semiprimering with involution, *AL-Mustansiriya J. Sci.*, 21(7), 2010, 34-41.
- [8] R. M. Muzibur, A. Adnan, A. D. Nadeem, and H. S.Aftab, A Note on pair of left centralizers in prime ring with involution, *Kragujevac Journal of Math.*, 45(2), 2012, 225–236.
- [9] S. Ali and N. A. Dar, Oncentralizers of prime rings with involution, *Bull. Iranian Math. Soc.*, 41(6), 2015, 1465–1475
- [10] A. Shakir, A. D. Nadeem and V. Joso, Jordan left*-centralizers of prime and semiprime rings with involution, *Beitr Algebra Geom*, 54, 2013, 609–624
- [11] A. ShakirandA. D. Nadeem, On left centralizers of prime rings with involution, *Palestine Journal of Math*, *3*(1), 2014, 505–511.
- [12] G. Öznur and K. G.Ahu, On α-*centralizers of semiprimerings with involution, *Palestine Journal of Math*, *3*(1) 2014, 445–448.
- [13] K. Emine and Gölbasi, Results on α -centralizers of prime rings of prime and semiprime rings with involution, *Communications*, 66(1), 2017, 172-178.
- [14] A. Shakir and H. Claus, Jordan α -centralizers in rings and some applications, *Bol. Soc. Paran. Math*, 26(1-2), 2008, 71–80.