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Abstract: This article studies the existence of solutions for impulsive fractional Hahn difference equation with
anti-periodic boundary conditions. The existence of solutions are proved by using Leray-Schauder nonlinear
alternative, Boyd and Wong fixed point theorem and Rothe fixed point theorem. Illustrative examples are also
presented to show the applicability of our result.
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1. Introduction
In recent years, Hahn fractional calculus had a remarkable development as shown by many authors (see
[1-9]). In [1], Hahn combined the classical Jackson g-difference operator and forward difference operator to
construct a Hahn difference operator Dq,a,, where q€(0,1) and @ >0 are fixed. The Hahn difference
operator is defined as follows:

fatro)-f(t) o
t(q-D+o = 1-q
It was applied to construct the families of orthogonal polynomial and investigate some approximation
problems (see [1] and the references therein). We find that

A, f(),if g=1,
D,.,f) = qu(t),_lf =0,
f't), if g=Lw—0.

In [7], the new notions of right reverse of the Hahn operator has been established and their basic

D,,f)=

properties were obtained. Also, the existence and uniqueness results for initial value problems of first and

second-order impulsive Oy s @ -Hahn difference equations were studied.

Impulsive differential equations with anti-periodic boundary conditions [10] are used to study the
developmental processes that are subject to sudden changes in their state. Due to its abundant theory [11] and
applicability in various fields of science and technology, this subject has been highly valued by researchers. It
provided a natural framework for mathematical modeling of many physical phenomena that occurring in the
area of mechanics, ecology, medicine, biology, and electrical engineering.

To the best of the author knowledge, the existence of anti-periodic boundary problems for impulsive
fractional Hahn difference equations has not been well studied till now. We will fill this gap in the literature.
The main purpose of this paper is to investigate the existence of solutions of an impulsive fractional Hahn
difference equation with anti-periodic boundary conditions given by

o Dyt x(t) = f(4,x(1)), ted c[0,Tlt=t,

AX(t) = x(t) = x(t) = ¢ (ot x(t,)), k=12,...,m,

t, Dqk ,a)x(t;)_tk,1 Dqk,l,wx(tk) = ¢: (tk,l Ié/::llvwx(tk ))v k=12,...,m,
X(0) = x(T), (Dy, ,X(0) ==, D, X(T),

o))
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where 0 =t <t, <---<t, <t , =T, Dy denotes the Caputo 0 ,c -fractional derivative of
order ¢, on J,, 1<, <2, 0<q, <1, >0, J, =(.t..]. J,=(0O0t], k=12,..
J=[0T], =3\, t,,...t,}, feCUxRR), ¢,¢ €C(R,R), k=12,...,m, |ka

O, @ *

}/ . - - - -
tqu:'w denotes the Riemann-Liouville @, ,@ -fractional integral of orders A,y >0 on J, ,

k=12,....m-1.

The paper is organized as follows. Section 2 contains the basic definitions and properties of fractional
q, @ -calculus, which will be used in the later section. Then, in Section 3 the main results is enunciated. Some

illustrative examples for the existence and uniqueness results presented in Section 4.

2. Preliminaries

First of all, we recall some basic concepts of (], @ -calculus [8,9].

Let qe(@©l) . w>0 , @=w/(1-q) , and the g-shifting operator as
CN© 1 (O T T o Ty Nma P (M)
(n—-m){ =1, (n—m){? =] [(n—, @, (m)),k e N U{ec},(n-m) = [ —5—.7 R,
i=0 iio N—, @7 (M)

where ,@;(m)=g'm+(1-q”)a.
For @ € R\{0,—1,—2,..}, the g-gamma function is as follows:

Iy(a+D) =[] T, (o) =[a],@-a)“ f1-q)*
Let f:l — R, Hahn difference operator is defined by

f(qt+w)—f(t) .
, If t#a,,
D..,fM)=1 qt+o-t “
(1), if t=aw,,
and the fractional Q, @ -derivative of Riemann-Liouville type by
(aqwf)(t) a <0,
Dy, f)=1f® a=0,
(DL 1 £)(x), & >0,
The fractional q, @ -derivative of Caputo type is
(al‘“f)(t) a <0,
D¢, f(t)= o) a =0,
(ng;]a 127 £)(x), @ >0,

where (a—| denotes the smallest integer greater or equal to & .

Definition 2.1Let v>0 and f be a function defined on [a,b] - Hahn's fractional integration of
f)(t) = f(t) and

Riemann-Liouville type is given by (1

a qw
(t)—— (t— D, ()Y f(s)d,,s, v>0,telab].
a qa; g,
From [9], we have the following formulas.
I (1+1)
X— a“) =9 7 (x—a)¥* ™, <a<x<bh),
(0D = G KA (o )
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Ir,(1+1)
B q )
A (x—a)) = q(a+/1+1)(x a) ), (@, <a<x<h),

Gle, D) = q(;+1)( ), (m,<a<x<b).

Definition 2.2 ([12],[13])Let E be a Banach space and let A: E — E be a mapping. A is said to be a nonlinear
contraction if there exists a continuous non-decreasing function 1 : R* — R*such that ¥(0)=0 and
w(a)<a forall ¢ >0 with the property:
|Ax — Ay| <w(|x—y|), vx,y € E.

Lemma 2.1lLet ¢, eR", Hahn’s fractional integration has the following semi-group property:
(a gwa qa)f)(t) (alg;ﬁf)(t)’ (600 <a< X<b)'
Lemma 2.2Let f (t) be a function defined on an interval (@,,Db) and ¢y € R* . Then the following is valid:

(Dgoalg, O =1(), (0, <a<x<b).
Lemma 2.3Letx € (N —1, N]. Then, for some constants C; € R, 1=1,2,...N . the following equality holds:

D¢ a1 a-N

(li0aDf, F)O) = f®)+C(t-a)5 ™" +.. . +Cy (t—a)s ™.

Lemma 2.4 If f(t) is defined and finite, then for v>0with N —-1<v<N,

D!, (1) = ﬁ [ty @y ()5 1 (9 5.

Lemma 2.5 Letar € (N —1,N]. Then, for some constantsC, € R,i1=1,2,...N —1, the following equality
holds:

N-1 Dk f
(1% SDE, )(D) = (1) ZT(?))a—a)g:).

Lemma 2.6Let h e C(J,R). Then the unique solution of
i Dy X(t)=h(t), ted, c[0,T]t=t,,

Qy @
Ax(t )= x(t) = x(t) = (N7 x(E)), k=12,...,m
5 Dqk’a,x(tk*)—tkf1 DqH]wx(tk) =, (tH ngkj’wx(tk)), k=12,....m
x(0) =x(T), oDy, ,X(0) ==, D ., X(T),

is given by
X(t) = —iﬁml[ 18R+, 12 x()]
——Z(T —t) 12 () + o (10X (ti))} P
+(t‘5){—§i{.l aro )+ o0 (t,llg,'ja,X(ti))} . I;‘mmjh(T)} @
+Zkl[ 122 h(6) + 0, 122, ()]

#7040 (XD 1200

@y

Proof For t e J,, applying % | » from 1, to t inthe first equation of (1) and using Lemma 2.5, we have
(1, Do X)) = x(t) x(O) ~t, D, X(to)=, 1,h(t),
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which leads to

X(t) =Co +Cit+ 15°,h(1), 3)
where C, =x(0) and C,=,D, ,X(0).For t=t,, we obtain

X(t) =Co +City+ 15° N(t,),and | D, X(t)=, 1, h(t,). 4)
For t e J,, onapplication of 4 Igfw to (1) and using the above process, we get

X(t) = x(t) +(t—t), Dy, ,X(t)=, I ,h(t). ()

The impulsive condition implies that
X(t) = Co +Cit +, 152, h(t) + @, (, 152 XN+ (E =), oo h(t) + ¢ (1 X@)) ], g, (D). 1n
the same ways, for t e J,, we get
X(t) = Co + Cit + 152, h(t) + @1, 1g2 XD+, 12,0 (E) + 9, (, 15 X(E))]
+ (=t a0, ) + 0 ( 1e X))}
+ (=)L 5o () + @, (15 X)), 152 h (D).
Repeating this process, for t e J.cJ. k=12,...,m—1, we find that

K
+ Z t-tX,, Ig:ij,;lh(ti )+ o (Vg X (W) 1 ().
i1

k
X(t)=C, +Cit+ Z:[ti_1 |inj,wh(ti )+ o, (t-_l I(f:l,mx(ti )]
= (6)

From (6), we get
X(T)=Co +CT + D[, 154 h(t) +or(, 12 x(t))]
i=1
2T =t 1o h )+ (10 XA, 1gn,h(T)
i=1
and
k ) . 1
W Dy X0 =Cy+ X [ 150 () + 7 (12 XA DT+, g h(),
i=1
which implies | D, ,X(0)=C, and
o Do oX(M) =Cyt 2L L th(t) + (1 XA 1 h(T).
i=1
By the boundary condition of (1) we obtain
1 18 o ,
Co=—5CT =5 2 [ 15N (®) + (137 X(1))]
i=1
18 i « . 1 .,
— E Z (l- — ti ){ti—l I qi:l,a)lh(ti ) + ¢i (ti_l I gnl:llywx(tl ))}_Etm I qmmvwh(r)
i=1

and
1& o " _ 1 .,
Co=—5 2 iah) + @ (12 X}, i oh(T).
i=1

Substituting the values C, and C, in(6) yields the solution (2).
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3. Main results

In the following, our discussion is based on the classic Banach space
PC(J,R)={x:J > R:x(t) eC(J"), X(t,; ) and x(t, ) exist, and x(t, ) = x(t, ),
k=12,...m}
with the norm ”X”PC = sup{[x(t)| ‘ted}.
Based on the lemma 2.6, we define the operator A:PC(J,R) — PC(J,R) by

A =3 2 [ 15 F ) - 1)
—%EXT4J{J&;fmmm»+@Qlﬁgxm»ké%%mfﬁmﬁ»
=) 5 S VXD 07 LX) 5, 1 T )

+Zil@@fmmm»+@QJ§@Mmﬂ

+Zatﬂumjuum»+mm%uwmﬂ )
1o F(1X(),

where

awuumm———{ (U=, @ ()07 £ (5, X())d, 5,
pela,,...a,, —l,...am —1,[)’0,...ﬂm_l,yo,...ym_l}, qe{ty,....q, ) aeit,...t,} and
ueftt,...t T}

Our first existence result based on Leray-Schauder nonlinear alternative(Specific content can be found in the
literature [13]).
For convenience, we set the notations:

y“ﬁ_;lil+ o (T-t)(6 ~t) ™ TRE -0

2T, J(aut+)) 245 T, (e 45T, (o)
t—t. (Bia) m —t)(t —t. (7ia) t —t (7ia)
:_Z ( i 1) Q3 :§Z (T |)( i |—1)¢u0 +T ( |—1)w0 . (8)
Ly 0B +1)’ 27 T, .(iatD 4T, ,(riatD

Theorem 3.1Assume that
(H,) there exist a continuous non decreasing function & : [0,0] — (0,00) , a continuous function p: J — R”*

with p* =sup,_, p(t)| and constants M, M, >0 such that |f (t, X)| < p(t)K(|X|), V(t,x) e IxR,
2 (0 < My, [ (0] < M,[X, wxeR,

k=12,...,m
(H,) there exist a constant | >0 such that
(1_ M:LQZ -M 293)| @)

. >1, MQ,+M,Q, <]
P w(N)Q,
where Q,,Q,, Q). are defined by (8). Then the problem (1) has at least one solution.

Proof The proof is carried out in the following steps:
Step 1: A maps bounded sets into bounded sets
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For any o >0, there exist K >0 such that , for each Xx€ B, ={xe PC(J,R) ||X||PC < p}, we have

[AX]oe <
Foreach t e J, we obtain
|Ax(t)| Z[p x(p) Vg 1)+ PMy I(fllla)l(ti)] Step 2:

5 2T {RCo 1) + oM 1216 PR, 1, 10T)

T 1 3 1 . 3
oK) 1) + M, 1 ) P R(o), 1 ll(T)}
i=1

+ Z[p x(p), Mg At) + oMy, |éf'fw1(ti)]

3T [P (), 18200) + oM 12 10)]
i=1
+ p K(p)tm Igmm(ul(T)
= p k(P)Q, + pPM Q, + pM Q. =K.
A maps bounded sets into equicontinuous sets of PC(J,R).
we suppose 7,7, € J, (Ke{01,2,...,m}) with 7, <7,,and then

|AX(72)_AX(71)
Wt M, & (ti—til)z;”}

P K(p) (Gt 2
S|T2 T1| Zl r (Oﬁ 1) " 2 ;rﬂhl(%l +1)

|Z| p K(p)(t i 1)(01I Y +p|V| ( i N 1)2271)
" ‘ CI. 1 (CZ —1) qI o (7|—l +1)

p'x (,0) (@) (1)
+m J.tk ty (2-2 @y q)qk (S)) qus _J;k ty (z-l o CDQk (S)) d S

As 7, —>7,, We have |AX(72)—AX(71)| — 0. By the Arzel4-Ascoli theorem, we can deduce that A is

completely continuous.
Step 3: (A priori bounds)
For 4 ¢ (0,1) the equation X = AAX has a solution X. Then, as in the first step and (H,), we have
[Xlee < Py (Xoc )2 + X M2+ M€,
Thus
(1-MQ, - M, Q)]
Py (X )
By (Hj), there exists | such that ||X||PC #| . Defined U ={xePC(J,R) :”X”pc <I}. The operator
A:U — PC is continuous and completely continuous. From the choice of U , there is no X € oU such
that X = AAx for some A €(0,1). As a Consequence of nonlinear alternative of Leray-Schauder type , we

deduce that A has a fixed point x €U which is a solution of (1). O
In the next existence result, we use Boyd and Wong fixed point theorem.
Lemma 3.1 (Boyd and Wong [12],[13]) Let E be a Banach space and let A:E — E be a nonlinear

contraction. Then, A has a unique fixed pointin E .
Theorem 3.1 Assume f:JxR-—>Rand g:[0,1]]— R" are continuous function satisfying the hypothesis:

Ha) | F €)= F & y)<g®)x " In@+[x=Y]), @ () =@ (V)] <Mz |x =],
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‘(p:(x)—(o:(y)‘ < M41’1|X—y|, for all te], and X,ye R, M,;,M, >0, the positive constant ¥
is defined by

138 @ .
x= E z I:ti—l I qllng (t) +M 3ty I‘f:lwl]
i=1
18 o _ 1 .,
+ E Z (T _ti ){ti—l I Qilja)lg (t) +M 4ty I (}llilfvwl}+5tm I Qmm-wg (t)
i=1
TI1 . _ 1 .,
SO0 Mo 1, 12000
i=1

k
+ zl [ 1 g+ My, 15 1]

k
+Z (t _ti )[ti—l I;fl:ll,;lg (t) +M 4ty I(;/ii:llvwl]+tk I‘ikvwg(t)
i=1

Then the fractional boundary value problem (1) has a unique solutionon J .
Proof Define () =In(a+1) (Va = 0) is acontinuous non-decreasing function.

Clearly, it satisfies (0)=0 and w(a)<a, forall a>0.
Forany X,y € PC(J,R) andforeach t e J, we have

|(AX)(t)1— g} Ay)(t)| <
E |Z=1: [ti—l I g‘;w
XU E
%tm 120 | £(T, %)~ £ (T,y)

+1Pi{ Ll F 0= £t )+ Moz 13, (= Y]+ D))

F(t,) - F & y)|[+ Moz 150, In(x—y|+2)()]

F(t, )= F (4, Y|+ Mozt 127, In(x—y|+1)(t))

212 G Oig@ i

1 an-1
+—= 1"

i=1

T 1)
+Zk:|:ti4 Iqoutljw
+ Z(t _ti)[ti,1 I;j;l| f(t, ) - f(t, y)| + MAtH |§fjf,w In(|x - y| +1)(ti)]
1o [E (30— F(t,y)

<ol a0 12
i=1

1 g~ i 1 “
5 z (T - ti ) {'[H I qilj,mlg (t) + M Aty I gl/illl’wl}+§tm I qmm,a)g (t)
=1

F(t, ) - F 6 y)|+ Mgz 155 In(x—y|+2)()]

2 c

Tl @ . 1 .-
[ 23 et M, 1 T 15 ()
2|24 2

k
+ Zl [t I, 9(t)+ My, lcf‘ja,l]

k
+ z (t _ti )[tifl I ‘::1;)19 (t) +M 4ty I (:jwlktk I ‘;ik’f‘)g (t)}

<7 (x-yx
~v (= yD.
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Then, |(AX)(t) — (Ay)('[)|PC < l//(”X — y||) .S0, A isanonlinear contraction. It follows from Lemma 3.1

that the problem (1) has a unique solution.
Finally, we prove the final result via following fixed point theorem.

Lemma 3.2 ([14],[15])Suppose that A: Q) —s E is a completely continuous operator. Suppose that one of the
following condition is satisfied:

(i) (Altman) [ Ax—x|* | Ax|" —[x|* forall xeaQ,
(ii) (Rothe) [|AX|<|x| forall x eoQ,
(iii) (Petryshyn) [|AX| <|Ax—X| forall x € Q.
Then deg(l —A,€2,6)=1,andhence A has at least one fixed pointin Q).

Theorem 3.3Assume that
(H,)the continuous functions f : JxR—R and ¢, :R— R, k=12,...m. satisfy

IimM:O,Iim(p“—(X):Oand |im<”k_(x):o, k=12,...m.

x—0 X x—0 X x—0 X
Then problem (1) has at least one solutionon J .
Proof Let x e pC(J,R).Taking & sufficiently small, we can choose two positive constants &, and &,

such  that |f(t,X)|<8|X| whenever ||X||PC <o, and @ (X)<8|X| whenever ||X||PC <o, for
k=12,...m. Setting & =min{d,,5,}, we define the open ball B, :{XEPC:”XHPC <O}, As in

Theorem 3.2, it is clearly that the operator A:PC — PC is completely continuous. For any X € 0B, we
have

X T XD 0] X 5, 12, (T X))

+(t —E)Bi L2 X+ (1 XD 1 T X ))}

i
i=1

DN NERI R IMEEION
=t 1 X)) + o (1 X))

i=1 I
+, oo T (6 X(1)
<(Q +Q, +Qy)elx|

e<(+9Q, +Q,)™, we deduce that |AX| < |X| So, we have ||AX|| < ||X|| It follows from Lemma3.2(ii)

A =2 [ 1 TG + 12X setin

that problem (1) has at least one solutionon J .

4. Examples

In this section, we present three examples to illustrate our results.

Example 4.1 Consider the following boundary value problem for impulsive fractional q’w-difference

equations:
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k+3

$DRL x(t) = o (log, (| |+2) 2), te[0,2]\Mt,,t,,t.},

K—3k+a'’ 1 (2 t) K
AX(t,) = sin(,_ 102t )), b, == k=123,
19+k K2 —ak+a"’ 2

k-1
|(4+( 1) )IZX(t )
K _3k+4'”

tkD 1 X(t )- t. 1 X(t, )—3 I i
X(0) =5x(2). 0D x(O) = D, x(2).

2 ¢
Hereq, = (k+3)/(k+2) q =1/(k* -3k +4), k=0123, g, =2+(-D*"/2,
Ve =@+ED N2, te[02I\t,t,, 6}, m=3, T =2. With these given values, we find that

), =5.849251568 : Q, =1.433715149 : Q, =2.428688799 : and
1 X L 11
£(t,x)| = al | _ cL
1t +t)2 Gy P 2= TSy = 501
1 1 1 1
()= ghl= G L 0= e2. = sl i Mamgg o M=

find that Mle +M,Q, =0.6788579572 <1 , Also, there exists a constant | such that
| >65.8163183 satisfying (9). Thus, by Theorem 3.1, the anti-periodic boundary problem (1) has at least
one solution.

Example 4.2 Consider the fractional Hahn difference equations with periodic boundary as follows:

DIy ) zle-” In(x|+1), te[05/3\t, bt 1.3,

1/(k?-5k+8),w
k

AX(t,) = %tan‘l(tk B o XAt = 3 k=1234,

1/(k?-5k+8),@
(2k%-4k+3)/2
tey I1/(k2 5k+8)wx(t )

(2k?—4k+3)/2 '
tea I1/(k2 5k+8)a)x(tk)‘

. 1
t, Dl/(k2—5k+8),(ox(tk )_tm Dl/(k2—5k+8),wx(tk) - E (1

x(0) =-x(5/3), 0D1/8,a)x(0) :_4/3D1/4,wx(5/3)-
From the equation above, it clear that ¢, = (k* +5)/(k* +3), g, =1/(k* -5k +8), k=012,34,
=(2k+1/2, y,_, =(k* -4k +3)/2, te[05/3]\{t,.t,,t;,t,}, m=4, T=5/3, and

f60 =< In(X+1), g =e " p(y)=1tan’ys

4| | (ok( )= 2K 1| || | —|Z| Consequently, we can get y = 43.744295482 by computation. Then

all the conditions of Theorem 3.2 are satisfied. Hence, by Theorem 3.2, we see that the aforementioned problem
has a unique solution.

Example 4.3 Consider the following impulsive anti-periodic problem of a fractional Hahn difference equation:
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SDl I Dx(t) = 32—i (sin x(t) — x(£)e OOt 0,3/ 2]\ttt L}
Kx“(, 152 it )+ 2k (L, )

tya 1/(k2-5k+8),0  \ K k )’ tk :K,k —12,345,
log(|(, 125707 o x(t,))’ (t,)]+2) 4

1/(k?-5k+8),@
(2k2-4k+3)/2 5 (2k?-4k+3)/2 2
k (tm I1/(k2—5k+8),w X(tk )) +2K (tkfl Il/(k275k+8),w X(tk ))

Iog( (tk& I (2k274k+3)/2x(tk ))4 + 2)

1/(k?-5k+8),@

Ax(tk) =

+ —
t Dl/(k2—5k+8),a)x(tk )_tH Dl/(k2—5k+8),a)x(tk) -

X(0) =—x(3/2), ,D, x(0)=—.D, x(3/2).
g 2 g’

Let o, =(K2+k+3)/(k*+2) . q =1/(k>-5k+8) , k=012345 , B =k+1)/2
Veq=(k* =4k +3)/2, te[0,3/2]\{t,,t,,t,,t,,t,}, m=5, T=3/2. With these given values,
we find that QO =4.6842160837249, ), =0.351829188, Q, =1.63136447907, The functions
f(t,X) = (2t /3t +D)(sin x(t) — x(©))e* OO, g, (x) = (kx* (t, ) + 2k (t,)) /og X (t,)] +2) .
@1 (2) = (k¢ + 2kx) [(log( x| +2)) . k=1,2,3,4,5. satisfy

im FE) 2t

x>0 X 3t+1

3 * 4

lim P (X) _ k() +2kx(t, ) 0 ang lim P (X) _ kx"+2kx

=0 X log(|x°|+2) =0 % log(|x*|+2)
Thus, by Theorem 3.3, problem (1) has at least one solution on [0,3/2].

(Sin X(t) — X(t))exz (tycos* x(t) _ 0,

=0, k=12,34,5.
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