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Abstract: Fractional-order (FO) model provides a more realistic representation of the real world systems. [1]. 

Recently, it has been shown that FO controllers provide a more efficient, guaranteed, robust control to both FO 

and IO systems. FOPID controller parameters are composed of the proportionality constant, integral constant, 

derivative constant, derivative order and integral order, and its design is more complex than that of conventional 

integer order proportional integral derivative (PID) controller. In this paper, a FOPI controller design method 

that achieves user specified gain and phase margins which is easy and simple to implement is proposed for a 

Heat exchanger system involving delay. 
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1. Introduction 
Heat exchangers are important thermal systems with widespread applications, including: air 

conditioning, power generation, manufacturing, etc. The main goal of these devices is to maintain precise 

temperature conditions by controlling outlet temperatures of the working fluids in response to the operating 

conditions in a particular application. It is, thus, crucial to predict and control the behavior of these thermal 

devices. This calculation is difficult from a first-principles standpoint; geometry, turbulence, temperature 

dependent properties all add to the complexity of the problem. As a result, e.g., predictions are typically based 

on mathematical models derived from experimental data for specific heat exchangers. For steady state 

conditions, correlation equations in terms of Nusselt and Reynolds numbers are common [2]. However, 

modeling the dynamic behavior of a heat exchanger typically requires solving either partial differential 

equations (PDEs) or systems of ordinary differential equations (ODEs), which are computationally expensive 

and not suitable for real-time control purposes. Therefore, there is a need for compact and accurate mathematical 

models of these systems. 

A shell and tube heat exchanger consist of a bundle of tubes enclosed within a cylindrical shell. One 

fluid flow through the tubes and a second fluid flows within the space between the tubes and the shell. Heat is 

thus transferred from one fluid to the other through the tube walls, either from tube side to shell side or vice 

versa. They can further be classified according to their flow arrangement. Most shell and tube heat exchangers 

are 1,2 or 4 pass designs on the tube side depending upon the number of times the fluid in the tubes passes 

through the fluid in the shell. Counter-flow and parallel-flow are the two primary flow arrangements in heat 

exchanger. In Counter current mode, the hot fluid enters from one end of the exchanger and the cold fluid from 

the opposite end. In Co-current (Parallel) mode the flow of the hot and the cold fluid are taking place in the same 

direction. The outlet temperature of the shell and tube heat exchanger system has to be kept at a desired set point 

according to 18 B. Girirajan and D. Rathikarani., 2017/Advances in Natural and Applied Sciences. 11(9) 

July2017, Pages: 17-25 the process requirement. Due to nonlinear nature, shell and tube heat exchanger system 

is hard to model and control using conventional methods. The integer order PID controller completely deals with 

the system dynamics whose behaviors are described by integer order differential equations. The closed system 

with this controller exhibits poor settling time due to its integer values of control parameters for a system 

involving non-integer values. Moreover, it has insufficient control parameters for a system such as heat 

exchanger involving time series of heat transfer. The real physical systems are well characterized by fractional 

order differential equations involving non integer order derivatives. This gives the option of fractional order 

dynamic systems and controllers based on fractional order calculus.[4] 

The integer order PID controller completely deals with the system dynamics whose behaviors are 

described by integer order differential equations. The closed system with this controller exhibits poor settling 

time due to its integer values of control parameters for a system involving non-integer values. Moreover, it has 

insufficient control parameters for a system such as heat exchanger involving time series of heat transfer. The 

real physical systems are well characterized by fractional order differential equations involving non integer order 

derivatives. This gives the option of fractional order dynamic systems and controllers based on fractional order 

calculus.[4] 



International Journal of Latest Engineering and Management Research (IJLEMR) 

ISSN: 2455-4847  

www.ijlemr.com || Volume 04 - Issue 12 || December 2019 || PP. 14-19 

www.ijlemr.com                                                      15 | Page 

A simple FOPI controller design method that achieves user-specified gain and phase margins was 

proposed for a linear system involving delay [3]. Unlike other existing methods in the same category where 

assumptions on the process dynamics are made to simplify the nonlinear problem encountered in computation, 

this method could yield exact solution for a general linear process. This also led to a simple solution to the gain 

and phase margin problem. Gain and phase margins are typical control loop specifications associated with the 

frequency response technique. Not only do they serve as important indicators of system, they also reflect 

robustness on the performance and stability of the system and thus are widely used for controller designs. 

 

2. Fractional Calculus 

2.1 A brief Introduction 

Although the fractional order calculus is a 300-years old topic, the theory of fractional order derivative 

was developed mainly in the 19th century. Fractional calculus is a generalization of integration and 

differentiation to a fractional, or non-integer order fundamental operator taD

where a and t are the lower/upper 

bounds of integration and α the order of the operation. 

There are three main advantages for introducing fractional order calculus to control engineering: 

(1) adequate modeling of control plants dynamic features.  

(2) effective and clear-cut robust control design.  

(3) reasonable realization by approximation [9]. The fractional calculus (FC) was unexplored in 

engineering, because of its inherent complexity, the apparent self-sufficiency of the integer order calculus (IC), 

and the fact that it does not have a fully acceptable geometrical or physical interpretation. The developmentof 

the fractional calculus was mainly in the hands of mathematicians. This led to a number of competing 

definitions of the derivative and integral operators. Its applications in engineering was thus delayed because of 

these multiple definitions. In the latter years FOC however attracted engineer’s attention, because it can describe 

the behavior of real dynamical systems in compact expressions. Many natural phenomena may be better 

described by a FOC formulation, because it takes into account the past behavior and it is compact when 

expressing high-order dynamics. Some common definitions of FOC are: 

 

[1] Grunwald‐Letnikov: 

𝐷𝛼𝑓 𝑡 = lim𝑕→0
1

𝑕𝛼
 

Г 𝛼+𝑚 

𝑚!Г 𝛼 
𝑓 𝑡 −𝑚𝑕 

𝑡−
𝑎

𝑕

𝑚=0
…(2.1) 

The Grunwald-Letniko definition is a generalization of the common derivative. 

[2] Riemann-Liouville 

𝐷𝑎  𝑓 𝑡 =𝑅𝐼 𝐷𝛼𝐽𝑚−𝛼 =
𝑑𝑚

𝑑𝑡𝑚
1 Г 𝑚 − 𝛼    

𝑓 𝜏  

(𝑡−𝜏 )𝛼−𝑚+1 𝑑г
𝒕

𝟎
…(2.2) 

where (m-1)<α<m,𝑚 ∈ 𝑛 

 

[3] Caputo 

𝐷𝑐
𝛼𝑓 𝑡 = 𝐽𝑚−𝛼𝐷𝑚 =

1

𝑇(𝑚−𝛼)
 

𝑓(𝜏)

(𝑡−𝜏) 𝛼−𝑚+1 𝑑𝜏
𝑡

0
…(2.3) 

where (m-1)<α<m, 𝑚 ∈ 𝑛 

 
The global definition has a convolutional format. It is worth mentioning here that from the pure 

mathematical point of view there are several ways to interpolate between integerorder multiple integrals and 

derivatives. The most widely known and precisely studied is the Riemann Liouville definition of fractional 

derivatives. The main advantage of Caputo’s definition in comparison with the Riemann Liouville definition is 

that it allows consideration of easily interpreted conventional initial conditions such as y(0) = y0, y′ (0) = y (1) 

etc. Moreover, Caputo’s derivative of a constant is bounded (namely, equal to zero), while the Riemann 

Liouville derivative of a constant is unbounded at t =0. 

 
2.2 Fractional order systems 

2.2.1 Introduction 

A fractional order differential equation, provided both the signals u(t) and y(t) are relaxed at t = 0, can 

be expressed in a transfer function form. 

𝑃 𝑠 =
𝑌 𝑠 

𝑈 𝑠 
=

𝑏𝑚 𝑠𝛽𝑚 +𝑏𝑚−1𝑠
𝛽𝑚−1

+⋯…+𝑏0𝑠
𝛽0

𝑎𝑛 𝑠
𝛼𝑛 +𝑎𝑛−1𝑠

𝛼𝑛−1 +⋯…..+𝑎0𝑠
𝛼0 …(2.4) 
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where ak(k = 0, ...n), bk α(k = 0, ...m) are constant, and αk (k = 0, . . . n), βk(k = 0, ...m) are arbitrary real or 

rational numbers and without loss of generality they can be arranged as αn> αn−1... > α 0 and βn > βn−1... > β0 .  

We propose a generalization of the PID controller, which can be called the PI D 
-controller because of 

involving an integrator of order α and a differentiator of order β.  

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝐼𝐽
𝛼𝑒 𝑡 + 𝐾𝐷𝐷

𝛽𝑒(𝑡)…(2.5) 

The equation for the PI D 
  controller output in the time domain is 

 
The transfer function of such a controller has the form given by 

𝐺 𝑠 =
𝑈 𝑠 

𝐸 𝑠 
= 𝐾𝑝 + 𝐾𝐼𝑠

−𝛼 + 𝐾𝐷𝑠
𝛽
…  2.6  

G(s) is the transfer function of the controller. e(t) is an error and u(t) is controller’s output. Taking α = 1 and β = 

1, we obtain a classic PID-controller. α = 1 and β = 0 give a PI-controller. α = 0 and β = 1 give a PD-controller. 

α = 0 and β = 0 give a gain. All these classical types of PID-controllers are the particular cases of the fractional  

PI D 
 controller [4]. However, the PI D 

controller is more flexible and gives an opportunity to better 

adjust the dynamical properties of a fractional-order control system. 

 

2.2.2 Oustaloup Recursive Approximation: 

FO differentiator/Integrator cannot be simulated directly. Various methods are available for IO 

approximation of these fractional terms. OustaloupRecursive Approximation (ORA) is one of them. Oustaloup 

Recursive Approximation is widely used to find a rational integer-order approximation for fractional-order 

integrators and differentiators of the form sα, The approximation algorithm presented by Oustaloup is widely 

used where a frequency band of interest is considered within which the frequency domain responses should be 

fit by a bank of integer order filters to the fractional order derivative . Suppose that the frequency range to be fit 

are given by ωa, ωb the term s/ωu can be substituted with 

𝐶0

1 + 𝑠/𝜔𝑏

1 + 𝑠/𝜔𝑕
…(2.7) 

Where  𝜔𝑏𝜔𝑕 = 𝜔𝑢 …  2.8  

And 𝐶𝑜 =
𝜔𝑏

𝜔𝑢
=

𝜔𝑢

𝜔𝑕
…  2.9  

Unfortunately, the fitting quality around the frequency band boundaries, and,may not be satisfactory. The 

Oustaloup’s approximation model to a fractional order differentiator  
s

can be written as 

𝐻  𝑠 =  
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are respectively the zeros and poles of rank k. And 2N + 1 is the total number of zeros or poles. The quality of 

the Oustaloup’s approximation method may not be satisfactory in high and low frequency bands near the fitting 

frequency bounds. 

 

2.2.3 ALGORITHM FOR THE DESIGN OF FOPI CONTROLLER  

Design equations: 

Let us denote the process and controller transfer function by P and G, as shown in the .In the design of 

controller, we have considered aspects of frequency domain gain margin (Am) and phase margin (Φm), which is 

mainly to ensure the stability of feedback control system. In other words, the controller must meet the following 

relationship: 
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                  Fig. 1 Feedback Control System 

 

𝑎𝑟𝑔 𝑃 (𝑗𝜔𝑝𝑐 )𝐺(𝑗𝜔𝑝𝑐 ) = −𝜋. . . (2.12) 

𝐴𝑚 =
1

𝑃(𝑗𝜔𝑝𝑐 )𝐺(𝑗𝜔𝑝𝑐 )
. . . (2.13) 

𝐺(𝑗𝜔𝑔𝑐 )𝑃(𝑗𝜔𝑔𝑐 ) = 1. . . (2.14) 

𝜙𝑚 = 𝑎𝑟𝑔[ 𝐺 𝑗𝜔𝑔𝑐  𝑃 𝑗𝜔𝑔𝑐 ) + 𝜋…  2.15  

From the analysis of stability of feedback control system, we have found the following new equations. Refer 

paper [3] for the design values of α, Kp, and Ki. 

 

 
ℑ(−

1

𝐴𝑚 𝑃(𝑗𝜔𝑝𝑐 )
)

ℑ(−
𝑒𝑋
−𝑗𝜙𝑚

𝑃(𝑗𝜔𝑔𝑐 )
)
 

 = 𝑎. . . (2.16) 

𝑙𝑜𝑔 𝑎

𝑙𝑜𝑔
𝜔𝑔𝑐

𝜔𝑝𝑐

= 𝛼. . . (2.17) 

𝐾𝑖 = − 
𝜔𝑝𝑐
𝛼

𝑠𝑖𝑛( 𝛼𝜋/2)
 ℑ 

−1

𝐴𝑚𝑃(𝑗𝜔𝑝𝑐 )

 . . . (2.18) 

𝐾𝑝 = ℜ 
−1

𝐴𝑚𝑃(𝑗𝜔𝑝𝑐 )

 −
𝐾𝑝

𝜔𝑝𝑐
𝛼
𝑐𝑜𝑠( 𝛼𝜋/2). . . (2.19) 

The three unknown equations for α, Ki, Kpare given above. 

 

2.2.4 Tuning procedure: 

Given the plant P(s) or P(jω), The gain margin mA  and phase margin  m are assumed for the design. 

The FOPI parameters can be tuned to meet both gain margin mA  and phase margin m   in the following way: 

• Obtain the process phase crossover frequency pc from open loop TF ( ) ( )G j P j  . 

• Check whetheror not the following equation issatisfied.  

1
( ) ( )

( ) ( )

mj

X

gc m pc

e

P j A P j



 



     ….(2.20) 

If not, either reduce pc or modify thegain/phase margin to meet (2.20) 

• Search from pc  down towards 0   for the frequency gc that satisfies (3.5). 

• Calculate  from (2.17). 

• Calculate iK from (2.18). 

• Calculate pK from (2.19). 

• Approximate FO integrator  by using ORA using (2.17). 

• Simulate using Simulink environment of MATLAB. 

 
3. Case study: Heat exchanger system: 

Consider a heatexchanger system described by the transfer function [5] 

𝑃(𝑠) =
3𝑒−10𝑠

(4𝑠 + 1)2
 

Desired specification: 
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1. Gain margin Am=6db 

2. Phase margin ϕm = 60
0
 

 

The phase crossover frequency (ωpc) obtained from open loop TF G(jω)(jω) is 0.1898 rad/sec. The gain 

crossover frequency (ωgc) is obtained by satisfying the 3.26). The ωgc obtained is 0.1210 rad/sec. The power α of 

FOPI is obtained by using (2.17). The integral gain𝐾𝑖 is obtained by using (2.18). The proportional gain 𝐾𝑝is 

obtained by using (2.19). The parameters of FOPI controller are: 

 
Fig. 2 Simulation of FOPI Controller 

 

 

1. α = 0.7054 

2. 𝐾𝑖 = 0.0035 

3. 𝐾𝑝 = 0.1362 

 

The fractional order term cannot be simulated directly. The integer order approximation of s
0.7054

 using 

ORA is given by (2.18). (The frequency band is 0.01 rad/sec to 100 rad/sec). The IO approximation of s
α
 is 

given by assuming the following change in the controller equation as: 

 

𝐺 𝑠 = 𝐾𝑝 +
𝐾𝑖

𝑠𝛼
=  𝐾𝑝 +

𝐾𝑖

𝑠
𝑠1−𝛼  

The term s
1−α 

is approximated. The second order IO approximation of s
0.7054

i.e s
1−0.7054

i.e s
0.2946

 is obtained by 

2.18 

 

𝐺𝑎𝑝𝑝𝑟𝑜𝑥𝐹𝑂𝑃𝐼  (s) = 
𝑛𝑐 (𝑠)

𝑑𝑐 (𝑠)
=

3.883𝑠2+19.9𝑠+1

𝑠2+19.9𝑠+3.883
 

 

The IO approximation of FOPI controller is given by: 

 

𝐺𝑎𝑝𝑝𝑟𝑜𝑥  (s) = 
0.5289𝑠3+2.7142+0.2056𝑠+0.01354

3.883𝑠3+19.9𝑠2+𝑠
 

 

The designed FOPI controller is approximated by IO approximation and is simulated by using simulink 

environment of MATLAB. The simulink block diagram is as shown in figure (4.1). The Bode plot of open loop 

system with designed FOPI controller is as shown in Fig.4.3. The gain and phase margins of 6.0445 dB and 

62.64240 are achieved using designed FOPI controller. The phase and gain cross over frequencies are 0.1730 

rad/sec and 0.0234 rad/sec respectively. The closed loop step response is as shown in Fig.4.6. The closed loop 

response settles to the desired setpoint, means there is no off set. Thus we have implemented the FOPI 

Controller using simulink environment of MATLAB. The design equations are used and the response is given. 

 

4. Conclusion and Future Work 
A simple method for the design of FOPI controller that achieves exact gain and phase margin is 

proposed. It is based on the utilization of frequency response of the process.The values of α, K i, Kp is calculated 

and s−α is approximated using ORA method.Simulation results have been presented to demonstrate the 

effectiveness of the method.From the results obtained, it is observed that the FOPI controller tuning method 

ensurethat the given gain and phase margins are achieved. It is also observed that FOPIcontroller achieves better 

control performance with the proposed design method. Fromthe response it is observed that the closed loop 

response does not settle to final value. 
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This error is because of the approximation.A comparison can be done between the integer order 

response & the fractional response.The work can be extended to design a FOPID controller. 

 
Fig. 3 Closed loop step response of the system with FOPI controller 

 
Fig.4 Bode plot of the system with designed FOPI controller 
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