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Abstract: In this paper, we introduce a new graph structure, called skeleton graph on finite dimensional vector 

spaces. In this chapter, we study connectedness, complete, tree, and Eulerian properties of the skeleton graph. 

Moreover, we characterize all finite dimensional vector space 𝕍 for which the skeleton graph is toroidal. 
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1. Introduction 
 The first instances of associating graphs with various algebraic structures is due to Beck [5] who 

introduced the idea of zero divisor graph of a commutative ring with unity. Though his key goal was to address 

the issue of colouring, this initiated the formal study of exposing the relationship between algebra and graph 

theory and at advancing applications of one to the other. Till then, a lot of research, e.g., [15, 2, 3, 1, 8, 6, 7, 4] 

has been done in connecting graph structures to various algebraic objects. Intersection graphs associated with 

subspaces of vector spaces were studied in [14, 18]. Recently, some other types of graphs associated with 

vectors in finite dimensional vector spaces were studied in [9, 11, 13]. 

 Let 𝕍 be a vector space over a field 𝔽 with 𝐵 = {α1, α2, . . . , αn} as a basis and θ as the null vector.  

Then any vector 𝓋 ∈ 𝕍 can be expressed uniquely as a linear combination of the form 𝓋 = a1α1 + a2α2 + + anαn. 

In [10], A. Das defined skeleton of 𝓋 with respect to B, as 

SB(𝓋) = {αi  : ai  0, i ∈ {1, 2, . . . , n}}. 

He defined a graph(Skeleton Union Graph) Γ𝔽 (V𝔹) = (V, E) (or simply Γ(𝕍) or Γ(𝕍𝐵) as follows: 

 V = 𝕍 \ {θ} and for 𝓋1, 𝓋2 ∈ V, 𝓋1 ∼ 𝓋2 or (𝓋1, 𝓋2)∈ E if and only if SB(𝓋1) ∪ SB(𝓋1) = B. 

Throughout this chapter, vector spaces 𝕍  are finite dimensional over a field 𝔽  and n = dimF(𝕍 ). Unless 

otherwise mentioned, we take the basis on which the graph is constructed as {α1, α2, . . . , αn}. 

 

2. Basics Properties of Skeleton Graphs 
 In this section, we introduce a new graph structure, called skeleton graph on finite dimensional vector 

spaces. Further, we study connectedness, complete, tree, and Eulerian properties of the skeleton graph. 

 

Definition 2.1. The skeleton graph Γ′ 𝕍B  of 𝕍 with respect to B is a simple graph with vertex set V = {v ∈ 𝕍 

\{θ} : S(𝓋) ⊂ B} and two vertices 𝓋1 and 𝓋2 are adjacent in Γ 𝕍B  if and only if SB(𝓋1) ∪ SB(𝓋2) = B. 

 

Example 2.2. Let   𝕍   = 𝔽4 be a vector space over 𝔽2. Then 𝑉  Γ′ 𝕍𝐵  = { α1, α2} and so Γ′ 𝕍𝐵 𝛾 ≅  𝐾2.  

 

Theorem 2.3. Let 𝕍 be a vector space over a field 𝔽. Then Γ′ 𝕍𝐵  is empty graph if and only if dim  𝕍𝐵 = 1 

 

Proof. Assume that dim 𝕍 = 1. Let α, β ∈ 𝕍∗. Then S (α) = {α1} = S (β) = B and so 𝑉(Γ′ 𝕍𝐵 ) is empty. Hence 

Γ′ 𝕍𝐵  is empty graph. 

Conversely, assume that Γ′ 𝕍𝐵  is an empty graph. Suppose that dim 𝕍 > 1. 

Then there exist α1 ∈ 𝕍∗ and 

α2 + α3 + ∙ ∙ ∙ ∙ ∙ + αn  ∈ 𝕍∗ such that S (α1) , S (α2 + α3 + ∙∙∙∙∙ + αn) ⊂ B and S (α1) ∪ S (α2 + ∙ ∙ ∙ ∙ ∙ + αn)  =  B. 

Hence α1  and α2  + ∙ ∙ ∙ ∙ ∙ + αn  are adjacent in Γ′ 𝕍𝐵 , a contradiction. Hence dim  𝕍𝐵  = 1. 

In view of Theorem 2.3, rest of this chapter, we assume that 𝕍 is a vector space of dimension greater than 1. 

 

Theorem 2.4. Let 𝕍 be a finite dimensional vector space over a finite field 𝔽. Then Γ′ 𝕍B  is connected and  

1 < diam (Γ′ 𝕍B ) ≤ 3. 
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Proof. Let α, β ∈ 𝕍∗. If α and β are adjacent in Γ′ 𝕍𝐵 
 
, then d (α, β) = 1. 

Suppose α and β are not adjacent. Then S (α) ∪  S (β)  B. Let U = B − S (α). 

If S (α) = S (β), then there exist γ in 𝕍∗ such that S (γ) = B −S (α) and so α −γ –β is a path in
 
Γ′ 𝕍𝐵 . 

If S (α) ⊂ S (β), then there exist γ in  𝕍∗ such that S (γ) = B − S (β) and so α− γ − β is a path in Γ′ 𝕍𝐵 . 
If S (α) ∩ S (β) = , then there exist γ1, γ2 in 𝕍∗ such that S (γ1) = B − S (α) and S (γ2) = B − S (β) and  

so α − γ1 − γ2 − β is a path in Γ′ 𝕍𝐵 . 
If S (α) ∩S (β) = , then there exist γ in  𝕍∗ such that S (γ) = B −(S (α) ∩ S (β)) and so α − γ − β is a path in  

Γ′ 𝕍𝐵 . Hence in any case d (α, β) ≥ 2 and so diam (Γ′ 𝕍𝐵 ) ≤ 3.  

 

Theorem 2.5.  Let 𝕍 be a vector space over a field 𝔽. Then
 
Γ′ 𝕍B  is complete bipartite if and only if  

dim (𝕍) = 2. 

 

Proof. Suppose
 
Γ′ 𝕍𝐵   is complete bipartite. If dim (𝕍) ≥ 3, then there exist ui = α1 + α2 + ∙∙∙∙∙ + αi−1 + αi+1 + ∙∙∙∙∙ 

+ αn in 𝕍∗ such that u1 − u2 − u3 − u1 is a 3-cycle in Γ′ 𝕍B , a contradiction. Hence dim (𝕍) = 2. 

Conversely, suppose dim (𝕍) = 2. For any α in V (Γ′ 𝕍B ), α = uα1 or α = vα2, S1 = {uα1 : u in  𝔽 } and  

S2 = {vα2 : v in  𝔽 }. Then every vertices in S1 is adjacent to every vertices in S2 and Hence Γ′ 𝕍B  is complete 

bipartite.  

 

Corollary 2.6. Let 𝕍 be a finite dimensional vector space over a finite field 𝔽. Then  Γ′ 𝕍B ≅  C4 if and only if 

dim (𝕍) = 2 and F 𝔽 ≅  ℤ3 

 

Proof. If Γ′ 𝕍B ≅  C4then by Theorem 2.5, dim (𝕍) = 2. If  𝔽  =  2, then Γ′ 𝕍B ≅  K2 , a contradiction. 

If  𝔽 ≥  4, then Γ′ 𝕍B ≅  𝕂3,3, a contradiction. Hence 𝔽 ≅  ℤ3 

 

Corollary 2.7. Let 𝕍 be a finite dimensional vector space over a finite field 𝔽. Then  Γ 𝕍B  is tree if and only if 

dim (𝕍) =  2 and 𝔽 ≅  ℤ3 

 

Corollary 2.8. Let 𝕍 be a finite dimensional vector space over a finite field 𝔽. Then  Γ′ 𝕍B  is complete if and 

only if dim (𝕍) =  2 and 𝔽 ≅ ℤ2  

 

Proof. Suppose Γ′ 𝕍B  is complete. Suppose dim (𝕍) ≥ 3. Then α1 and α2 are non-adjacent in Γ′ 𝕍B  , a 

contradiction. Hence dim (𝕍) = 2. If  𝔽  ≥ 3, then C4 is a subgraph of Γ′ 𝕍B  , a condradiction. Hence  𝔽 ≅  ℤ2 

 

Theorem 2.9. Let V  be a finite dimensional vector space over a field 𝔽.  

Then δ(Γ′ 𝕍B )= deg(αi) for all i = 1 to n. 

 

Proof. Let B = {α1, . . . , αn} be a basis for a vector space 𝕍. 

Let Si = {λ1α1 + ∙∙∙∙∙ + λi−1αi−1 + λi+1αi+1 + ∙∙∙∙∙  + λnαn : λj ∈  𝔽∗ } for i = 1 to n. 

Then |Si| =  (𝔽 −1)
n−1

. For each x in Si, 

S (x) = {α1, α2, . . . , αi−1, αi+1, . . . , αn} . 

Clearly S (x) ∪  S (αi) = B and so αi is adjacent to x for all x in Si. Hence deg (αi) = |Si|. Let y  αi for all i. Then 

there exist k, l such that y = ....+ λk αk + λl αl + …. in   V(Γ′ 𝕍B ) and S(y)  B. Therefore y is adjacent to all 

elements of Sk and y is adjacent to all elements of Sl . Hence deg (y) > deg (αi) and so δ(Γ′ 𝕍B ) = deg (αi) for 

all i.  

 

Theorem 2.10. Let 𝕍 be a finite dimensional vector space over a field 𝔽 and  V(Γ′ 𝕍B )  ≥ 3.  

Then Γ′ 𝕍B  is Eulerian if and only if   𝔽  is odd. 

 

Proof. Suppose
 
Γ′ 𝕍B  is Eulerian. If  𝔽  is even, then deg (αi) = ( 𝔽  − 1)

n−1
 is odd, a contradiction.  

Hence  𝔽  is odd. 

Conversely, suppose  𝔽  = q is odd.  

 Then     deg (α1 + ∙∙∙∙∙ + αk ) = {λ1α1 ++ λk+1αk+1 + ∙∙∙∙∙ + λnαn  : λi   0} 

for i=1 to n. Then deg (α1 + ∙∙∙∙∙ + αk ) = q
k
 (q − 1)

n−k
    and  so deg (α1 + ∙∙∙∙∙ + αk ) = q

n−1
 (q − 1) is even. 

Hence Γ′ 𝕍B is Eulerian. 
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3. Topological properties of 𝚪′ 𝕍𝑩  
Theorem 3.1. Let V = 𝔽pn  be a vector space over a field 𝔽p . Then

 
Γ′ 𝕍B  is planar if and only if the one of the 

following is holds: p = 2 and n ≤ 3 (or) p = 3 and n = 2. 

 

Proof. If n = 1, then by Theorem 2.3,
 
Γ′ 𝕍𝐵  is an empty graph. Hence we assume that n ≥ 2. 

Suppose p ≥ 5. Then K3,3 is a subgraph of Γ′ 𝕍𝐵 , a contradiction. Hence p ≤ 3. 

Suppose p ≥ 3. If n ≥ 3, then K3,3 is subgraph of Γ′ 𝕍𝐵 , a contradiction.  

Hence p = 2. Suppose p=2, If n ≥ 4, K3,3 is subgraph of Γ 𝕍𝐵 . Since Γ 𝕍𝐵  is non-planar, a contradiction. 

Hence n ≤ 3. 

Conversely if, Assume that if p=2 and n ≤ 3 and p=3 and n=2. 

 

 

 

 
 

  
Γ 𝕍𝐵 : p = 3,  n = 2 

fig 6.1 Planar Embedding of Γ 𝕍𝐵   
 

Theorem 3.2. Let V = 𝔽pn  be a vector space over a field 𝔽p . Then Γ 𝕍B  is outer-planar if and only if the one 

of the following is true: p = 2 and n ≤ 3 (or) p=3 and n=2. 

 

Proof. The proof follows by above theorem. 

 

Theorem 3.3. Let V=𝔽pn  be a vector space over a field 𝔽p . Then Γ 𝕍B  is toroidal if and only if Γ 𝕍B  if p=5 

and n=2. 

 

Proof. Assume that Γ 𝕍B  is toroidal. Suppose that p ≥ 5. If n ≥ 3, |V(Γ 𝕍B )| ≥ 14, |E(Γ 𝕍B )| ≥ 25 and 

gr(Γ 𝕍B ) = 3 then by theorem that γ(Γ 𝕍B ) > 1, a contradiction. Hence p=5 and n=2. 

Suppose p=3. If n ≥ 3, |V(Γ 𝕍B )| ≥ 18, |E(Γ 𝕍B )| ≥ 72 and gr(Γ 𝕍B ) = 3 then by theorem that 

 γ(Γ 𝕍B ) > 1, a contradiction. 

Suppose p=2. If n ≥ 4, |V (Γ 𝕍B )| ≥ 14, |E(Γ 𝕍B )| ≥ 25 and gr(Γ 𝕍B ) = 3 then by theorem that 

 γ(Γ 𝕍B ) > 1, a contradiction. Hence Γ 𝕍B  is toroidal if p=5 and n=2. 

Conversely, if p = 5 and n = 2, then follows by fig. 6.2 

 

 

 

Γ 𝕍𝐵 : p = 2,  n = 2 

 

Γ 𝕍𝐵 : p = 2,  n = 3 
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Γ 𝕍𝐵 :p=5 n=2 

fig 6.2. Embedding of Γ 𝕍𝐵  𝑖𝑛 𝕊1  

 

Theorem 3.4. Let V=𝔽pn  be a vector space over a field 𝔽p . Then Γ 𝕍B  is genus two if and only if Γ 𝕍B  is 

isomorphic if p=2 and n=4. 

 

Proof. Assume that Γ 𝕍𝐵  is genus two. 

Suppose p ≥ 3 

If n ≥ 2, |V (Γ  𝕍𝐵 )| ≥ 18, |E(Γ  𝕍𝐵 )| ≥ 72 and gr(Γ 𝕍𝐵 ) = 3 then by theorem that γ(Γ 𝕍𝐵 ) > 1, a 

contradiction. Hence p = 2  

Suppose p = 2 ,If n ≥ 5, |V (Γ  𝕍𝐵 )| ≥ 18, |E(Γ 𝕍𝐵 )| ≥ 72 and gr(Γ 𝕍𝐵 ) = 3 then by theorem that 

 γ(Γ  𝕍𝐵 ) > 1, a contradiction. Hence n=4. Hence p=2 and n=4 be a genus two graph. 

Conversely, if p=2 and n=4 follows by fig.6.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Γ 𝕍𝐵 :p=2  n=4 

fig 6.3. Embedding of Γ 𝕍𝐵  𝑖𝑛 𝕊2  
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