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Abstract: Test data generation is an important activity in software testing that is used to create test data for 

testing the software in order to reveal bugs in an effective manner.  But, one important challenge in software 

testing is the automatic generation of test data so that the total cost of testing can be reduced. Therefore, in this 

study we have presented the review of the most commonly used automatic test data generation techniques like 

random, symbolic execution and search based techniques. Apart from review, we have also highlighted the pros 

and cons in each of these techniques in order to better understand them as well as extend them in future studies. 

 Keywords: Software testing, test data generation, random testing, symbolic execution and search based 

testing. 

 

I. Introduction 
Testing software is very important and challenging process. Lack of an effective testing strategy has 

resulted in many software related failures in past, and have actually brought social problems and financial losses 

[1]. Software testing is an effective method that is used to estimate the present reliability as well as predicting 

the future reliability of the software [1]. We test the software using a diverse set of many appropriate testing 

techniques by applying them systematically. Testing techniques refer to different methods of testing particular 

features of a computer program, system or product [1]. We need to select technique(s) that will help to ensure 

the most efficient and effective testing of the system [2]. The test techniques should find the greatest possible 

number of errors with minimum amount of efforts, within time span and also with a finite number of test cases. 

Software testing is technically and economically essential for the production of high quality software. It is 

estimated that about half of the software production costs are due to the testing [2]. Therefore, it is crucial to 

reduce costs and improve the effectiveness of manual software testing by automating the entire software testing 

process. In the software test automation, many techniques for the automatic generation of test data are proposed 

[7, 8, 9, 10, 11, 12, 13, 14] and also many tools for automatic test execution [15, 16, 17, 18 , 19, 20] have been 

proposed and developed to automate the test process. One of the most important problems in any automated 

software testing process is the automatic generation of test data [3, 4, 5]. Test data generation is the task that 

consumes more time in software testing and one that affects its effectiveness and efficiency. The generation of 

test data in software testing is the process of identifying and selecting input data that meet the indicated criteria, 

while the selection criterion defines the properties of the test cases that will be generated according to the test 

plan [6]. Several software artifacts can be considered to generate test data, such as the input / output data space, 

software requirements; design models; code; and the information obtained from program execution [6]. 

There are usually two approaches followed for software testing: white box testing and black box testing 

[4]. In white box testing, the code or internal structure of a program is analyzed by the application of many 

white box test case generation techniques [4]. Test cases are generated and the adequacy of the test cases is 

determined based on the number code coverage criterions like statement coverage, branch coverage, decision 

coverage, and data flow criteria [5]. In case of black box testing, which is also called data driven, treats a 

program as a black box and is uncertain about its internal behavior and structure. There are also various black 

box testing techniques that are used for test case generation, but mostly commonly used ones are equivalence 

partitioning, and boundary value analysis [4].   

 

II. Automated Software Testing 
The traditional approach for software testing was manual and accounts for about 50% of the software 

development budget [1,2].  Automatic software testing techniques reduces the cost by reducing the human effort 

and time consumed by manual techniques in test data generation, test execution and test output inspection. 

Automated software testing techniques and tools are more time efficient. In the following sections of this study, 

we present the review of the most used automatic software test data generation techniques with the pros and 

cons for better understanding and future endeavor. 
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III. Test Data Generation Approaches 
The goal of automating the testing process is to reduce the costs and human efforts spent on manual 

software testing. If the testing process is completely automated, the cost of testing and software development 

will also be significantly reduced [2, 3]. In addition to many testing activities, test data generation is one of the 

most challenging tasks from an intellectual point of view and also the most important since the domain of each 

input variable is large. The choice of exhaustive tests is not practical due to time and resources limits. Therefore, 

the only option left available is to use only a fraction or a part of the input domain. The question that arises and 

needed to be answered is what values and how many should be selected to test the code that maximizes the 

chance of detecting the faults. Test data can take various forms, but typically it is the different combinations of 

some inputs with their corresponding expected outputs [3].  For an effective and efficient test process, an 

automated test case generation strategies are employed to design or generate test data, systematically and 

efficiently. Also, to enhance the quality of software systems, there is a need for 100% automatic testing [3]. But, 

a comprehensive automatic test data generation activity in addition, must address other activities like: the 

automatic generation of test requirements, automatic test oracle generation, test case selection and test case 

prioritization for regression testing [3]. 

The goal of the software test is to find out more flaws by examining the code with a powerful set of test 

cases. To generate such a powerful set of test cases to meet the desired or established adequacy criteria; is an 

intellectually demanding and very difficult task. Therefore it strongly impacts the effectiveness and efficiency of 

the whole test process [3] [4] [5]. In the literature, the most commonly used techniques are random execution, 

symbolic execution, and search-based test data generation techniques. 

 

3.1 Random Based Techniques 

Random testing is considered the most fundamental and most popular testing method. Random testing 

is a dynamic testing technique in which the product is executed with non-correlated unstable test data from the 

specific input domain [21]. Hanford in [22] introduced the random testing tool that randomly generated data for 

testing PL/I compilers. Random testing compared to other techniques like hill climbing and evolutionary testing 

is found economical, unbiased with no human involvement and also requires less intellectual and computational 

effort [23].   

In random testing, arbitrarily test data is select from the input domain and then applied to the program 

under test. The random automatic test data production is commonly used as the default method, with which 

other methods are judged [24]. Random approach is supposed to be superior as there is not much difference 

between it and partitional testing in terms of finding faults [25]. For a small number of sub-domains, partition 

testing will perform better than random testing. Deason in [26] commented that random number generators are 

ineffective as they rarely provide the necessary coverage of the program. Also Myers in [27] strengthened this 

with an opinion that random testing is probably the poorest testing methodology. However in [28], Duran and 

Ntafos stated that many errors can be easily fond with random approach, but the problem is to determine 

whether a test run failed or not.  

The adequacy of random test data mainly depends on the   interval from which the data is generated 

[29]. The range or interval plays a vital role as data from poorly chosen intervals are much worse than those 

from well-chosen intervals. It has also been found that the change of range o r  interval has a great effect on 

the efficiency of the technique [26]. But, the benefit of random testing is that, it puts more stress to the program 

under test than the hand-picked test data [30].  

 

3.1.1  Issues in Random Based Techniques 

1. Random approach though simple, cheap, and easy to implement technique, but it is blind and shallow in 

many occasions and may not reach a number of significant test targets if they are unlikely to be covered 

randomly [26, 30].  

2. The other issues with random approach is that, its adequacy is very dependent on the interval from which 

data is generated and it may not generate a specific set of test cases like equal pair of values to test the 

branch predicate, values outside the interval, etc. and thus, does not ensure stable strength of coverage [26]. 

3. The other critical issue with random approach is that it creates a huge number of test cases due to multiple 

iterations in search of few effective test cases to satisfy the specified test adequacy criteria [30]. 

 

3.2 Symbolic Execution Based Techniques 

Symbolic execution is a white box automatic test data generation technique. Symbolic executions based 

techniques uses symbolic values as program inputs instead of actual variables [31]. They represent these values 

as symbolic expressions of those inputs [31]. Basically, a symbolic program executed includes the symbolic 

values of the variables; a path restriction and a program counter [31]. The path constraint is a Boolean formula 
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and an accumulation of constraints that the inputs must fulfill in order to execute the path. The role of program 

counter is to identify the next statement to be executed. A major challenge with symbolic execution is that it 

needs to understand each and every statement in order to collect the path constraints. Thus the effectiveness of 

symbolic execution of real world programs is still limited due to the three fundamental problems like Path 

explosion, Path divergence and the solution of Complex constraints [31]. However, due enormous 

computational power of today’s computers, the barrier of applying symbolic execution is lower and apart from 

its application to test data generation [32] [33] [34], the other uses of symbolic execution include generation of 

security exploits [35], regression testing [36] and database testing [37].  Hence due to its wide application, a 

number of tools have been developed and are available which includes: Symbolic Pathfinder [38], JCUTE [39], 

JFuzz [40] and LCT for Java [41], CUTE [42], Klee [32], S2E [43], and PEX [44], for .NET language. 

 

3.2.1 Issues in Symbolic Execution Based Techniques 

Although, symbolic execution is a useful technique for test data generation, but it suffers from the 

following three fundamental problems [31]: 

1. Due the presence of extremely large number of paths in today’s real world software, symbolic execution 

suffers from path explosion problem and only a reasonable number of paths can be symbolically executed. 

2. The second problem associated with symbolic execution is path divergence, the inability to compute precise 

path constraints. 

3. The third fundamental issue with symbolic execution is its inability to solve complex path constraints in 

linear operations involving multiplication, division and mathematical functions such as sin and log.  

 

3.3 Evolutionary Based Techniques 

Evolutionary based testing approaches like genetic algorithms have a wide application domains and in 

literature [4, 10, 45- 47] they also find their application in software test data generation as local search 

techniques like Hill Climbing becoming trapped in local optima. Evolutionary approaches or algorithms are 

characterized by an iterative procedure as they work in parallel on a number of potential solutions. They are 

differentiated from other local search techniques as they maintain a population of candidate solutions rather than 

just one solution [45, 47] and thus are more robust to entrapment in local optima. The variation in the 

functioning is achieved by selection and reinsertion operators that are based on fitness function. The role of 

selection operator is to select individuals for reproduction based on the individual’s fitness values. And the role 

of reinsertion operator is to determine how many and which individuals are to be taken from both parent and 

offspring population in order to form the next generation. The fitness function is an important feature in every 

evolutionary algorithm as it measures the performance of an individual or every individual so that different 

individuals can be compared in order to guide the optimization process towards the required direction [45, 46]. 

In 1976, Webb Miller and David Spooner [45] published the first paper in which floating point test data is 

generated using search-based technique. They devised fitness functions that provide the means to evaluate 

individuals by assigning the lower cost values to inputs which execute the desired path and the higher cost 

values to those which does not execute the desired path in order to find a better solution. In 1992, Xanthakis in 

[46] applied GA for automatic test case generation. After that, a plethora of work was proposed to tackle 

different testing problems, including functional testing [47], integration testing [48], mutation testing [49], 

regression testing [50], test case prioritization [51, 52]. 

 

3.3.1 Issues in Evolutionary Based Techniques 

Genetic algorithms are showing promising results and are widely applied to solve many problems 

related to software testing. But, there are many issues as well in applying Genetic Algorithms [53, 54] like: 

1. Representation of the population that must be encoded so that they can be manipulated by the search 

algorithm. 

2. The fitness function derivation or design that will guide the search to promising areas of the search space by 

evaluating candidate solutions. The fitness function is problem-specific, and needs to be defined for every 

new problem. 

3. Genetic Algorithms suffer from risk of suboptimal solution, delayed convergence and they may also strike 

up at local optima. 

4. The experimental results were also found not satisfactory as the mutation rate has to be increased 

consistently when compared to usual application of genetic algorithms. 

5. Additionally, the cause of slow convergence, the results were not found stable as one population can be 

more efficient from the following, due to a non-explicit memorization. 
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However, the existing automatic test case generation techniques [1, 2] and tools have some extent 

reduce the testing effort, time and cost, but there is still a long way to go. Because, with the application of 

automatic test data generation techniques and tools, a huge quantity of test cases are generated that are infeasible 

to be considered for practical execution and hence defeating the gains from automation. Also, most of the test 

cases are redundant in the sense of executing common attributes or features of the code under test and are also 

revealing common sets of defects. Therefore, other than structural coverage criteria, test-data generation process 

should be incorporated with selection strategies that will help to focus test generation at particular functionalities 

of interest by minimizing the redundancy in test suites; and limit the size of test suites [3]. Hence, in addition to 

the need of an efficient test data generation approaches there is also a need for an efficient test suite 

minimization techniques [55, 56, 57] that will remove the inconsistencies in the test suites generated with 

automatic test data generation techniques. Therefore, it is very imperative to understand which of these 

techniques are useful and in what environment they are feasible. 

 

IV. Conclusion and Future Scope 
Automatic test data generation is an important process for carrying automatic software testing. Manual 

test data generation is very difficult and time consuming activity and the efficiency of the data is entirely 

dependent on the tester’s intuition and his expertise. So, automatic test data generation methods proved to be 

very effective methods for testing as they reduce time, effort and cost devoted during testing or carrying-out 

automatic testing. In this study, we have first discussed the three most commonly used automatic test data 

generation techniques like random, symbolic execution and search-based techniques. After that the pros and 

cons in each of them were also highlighted so that in future, further work could be done in order to enhance 

them as well as extend them for better results. The other aspect in future direction would be to supplement all of 

them with some minimization approaches in order further reduce the number of test cases as well as the 

randomness from an initially automatic generated  test suite for an effective testing process.  
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