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1. Introduction 

The fractional calculus deals with the generalization of integration and differentiation of any order. 

Because of its distinguished applications in various branches of science and engineering, there has been a great 

deal of interest in this field [1–6]. An important and new issue is to combine the time scales [7] and fractional 

calculus [8–11] looking for a better description of the phenomena having both discrete and continuous 

behaviors. 

Accompanied with the development of the theory on fractional q-calculus, The boundary value 

problem of fractional q-difference equations and impulsive fractional q-difference equations was studied in 

many reports[12–17 ]. In recent years, many results have been obtained in the stability theory of impulsive 

differential equations with infinite delays [18–19]. the stability of q-fractional dynamic systems has attracted the 

attention of several researchers[ 20 ]. But, the stability results for impulsive fractional q-difference systems with 

infinite delay are scarce. The present paper is inspired by[18–19], we extend the method of Lyapunov functions 

to study the uniform stability of solutions of the following impulsive fractional q-difference system with infinite 

delay: 
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and ( ) lim ( )
s t

x t x s





 . A function ( )x t  is called a solution of (1.1) with the initial condition 

= ( ) ( ),   [ ,1]
qTx x        ,                      (1.2) 

where 
0qT t  ,  and ([ ,1] , )

q

n

TPC  R , if it satisfies both (1.1) and (1.2). 

 

2. Preliminaries 

In this section we summarize the basic definitions and properties of q-calculus and fractional 

q-integrals and derivatives. For more details on the theory of q-calculus we refer to [21] and for the theory of 

q-fractional calculus we refer to [10,11](and the references therein). 

For 0 < q < 1, let the time scale[7] { : } {0}n

qT q n Z   . 

For a function : qf T R , the nabla q-derivative of f is given by 

( ) ( )
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The nabla q-integral of f on the interval [0, t] is given by 

0 0

( ) (1 ) ( )
t

n n

q
n

f s s q t f tq q




     

and on for [a, t], qa T  is given by 

0 0
( ) ( ) ( )

t t a

q q q
a

f s s f s s f s s       . 

Moreover 

 
1

( ) (1 ) ( )n n

q
t n

f s s q t f tq q


 



    , 

and for 0 b   in qT  

( ) ( ) ( )
b

q q q
t t b

f s s f s s f s s
 

       . 

The fundamental theorem in q-calculus gives 
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   The q-gamma function, ( )q  for  \ 0, 1, 2,   R  is defined by
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The q-gamma function satisfies the identity
1

( 1) ( ) (1)=1 0
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    The left q-fractional integral of order 0,  q aI  a starting from 0 qa T   is defined by 

             11
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When n  N , we have ( ) ( )n n

qq aI f t f t  for 0 qa T  .It is worth mentioning that the left q-fractional 

integral  q aI a maps functions defined qT  to functions defined on qT . 

   The left Caputo q-fractional derivative of order 0,  N  of a function f is defined by 

( ) 11
( ) ( ) ( ) ( )

( )

t
C n n n n

q a q a q q q q
a

q

f t I f t t qs f s s
n

  



        
   , 

where [ ] 1n   . Here [ ] is the greatest integer less than  . 

Property 2.1 ([11]). Assume 0  and f is defined in suitable domains. Then, 
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Throughout this paper we let the following hypotheses hold: 

(H1) For [ , ]
qTt   , the solution ( , , )x t   coincides with the function ( )

t



. 

(H2) For each function ( ) :[ , ] 
q

n

Tx s  R , ( ), ( ) 

k kx x   exist and， ( ) ( ) k kx x  ， ( , )tf t x  is continuous 

for almost all [ , ] 
qTt   and at the discontinuous points f is right continuous. 

(H3) ( , )f t   is Lipschitzian in   in each compact set in ([ ,1] , )
q

n

TPC  R . 

(H4) The functions , , 1,2, k kI J k ,are such that if , 0 kx D I , and 0kJ , then 

( ( )) ( ( )) k kI x t J x t D . 

(H5) ( ,0) 0, (0) 0 kf t I  and (0) 0, 1,2,  kJ k , so that ( ) 0x t  is a solution of (1.1), which we call the 

zero solution. 

In this paper, we assume that ( , )tf t x  ,
kI and 

kJ  satisfy certain conditions such that the solution of 

systems (1.1) and (1.2) exists on [ , ]
qT  and is unique. We using the following notation: 
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( ) { : }  nS x x R , 

( ) { ([ ,1] , ) : , }
q

n

TPC PC x        R ; 

( ) { :t tPCB t x D x  is bounded}; 

( ) { ( ) : }PCB PCB         

Definition 2.2  The zero solution of the system (1) is said to be: 

(D1) stable, if for any 
0,  qt T   and 0 , there exists a ( , ) 0      such that ( )PC  implies 

that 

( ; , ) ,x t    for all , qt T t  . 
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with ( , ) ( , ) k kV x V x  satisfied. 

 

3. Main results 

In this part, we consider the uniform stability of the impulsive fractional q-difference system with 

infinite delay(1.1). We have the following two theorems about the uniform stability of the system (1.1). 

Let the sets K be defined as 

{ ( , ) :K C    R R strictly increasing and (0) 0}  ; 

1 { ( , ) :K C    R R  (0) 0   and ( ) 0 for >0}s s  . 

Theorem 3.1  Assume that there exist functions 
0, , ( , ( ))a b K V t x t v  such that 
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Then the zero solution of (1.1) is uniformly stable. 
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Proof.  Since
1
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b

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1 ( )
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
  . We will prove that if ( )PC   then ( ; , )x t     for [ , ] 

qTt  . 

Let ( ) ( ; , )x t x t    denote the solution through ( , )  . Let
1[ , )

qm m T    for some mN . Then, we will 

prove that 

( , ( )) ( ),   [ , )
qm TV t x t b t    .                (3.1)  
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( , ( )) ( , ( )) ( ( ) ) ( ) ( )V t x t V x b x b b        . 

 So if inequality (3.1) does not hold, then there exists an [ , )
qm Tr   , such that 

( , ( )) ( ),  V r x r b    

( , ( )) ( ),   [ , ]
qTV t x t b t r    . 

( , ( )) 0qV r x r   . 

This contradicts condition (ii), so (3.1) holds. In view of inequality (3.1) and condition (iii), we have 
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Next we prove that 

-1( , ( )) (1+ ) ( ),   [ , )
qm m m TV t x t b b t    .            (3.2)  

If this does not hold, then there exists an 
-1[ , )

qm m Ts   such that 

( , ( )) (1+ ) ( )mV s x s b b    
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( , ( )) 0qV s x s   . 

This contradicts condition (ii), so (3.2) holds. In view of inequality (3.2) and condition (iii), we have 
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By simple induction, we can prove, in general, that for 0,1,2,k    

1( , ( )) (1+ ) (1+ ) ( ),    [ , )
qm k m m k m k TV t x t b b b t       . 
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+k+1 +k+1 1( , ( )) (1+ )(1+ ) (1+ ) ( )m m m k m k mV x b b b b      . 

This together with inequality (3.1) yields 

( , ( )) ( ),    [ , )
qTV t x t Mb t    . 

From this and condition (i) we have 

( ( ) ) ( , ( )) ( ) ( ),  [ , )
qTa x t V t x t Mb a t       . 

So ( ) ,   [ , )
qTx t t    . 

The zero solution of (1.1) is uniformly stable. The proof of Theorem 3.1 is completed. 

 

Theorem 3.2  Assume that there exist functions 
1 0, , ,  , ,  , ( , ),  ( , ( ))a b G K P H K h g PC V t x t v    R R  and 

H is decreasing. For any 0  , there exists a
1 (0, )  such that 

1( )x S  implies 

that ( ( )) ( ( )) ( )k kI x t J x t S   , 

constants 0,k k  Z , such that 

(i) ( ( ) ) ( , ) ( ( ) )a x t V t x b x t  , for all
0( , ) [ , )

q

n

Tt x t  R ; 

(ii) For any 
1( , ) ([ ,1] , ( ))

qk q TT PC S     , ( ( ( )) ( ( ))) (1+ ) ( ( ))k k k k k k k kV I x J x V x         ， ， , where 
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 (iii) For any 
0[ , )

qTt   and ([ ,1] , ( ))
qTPC S   , if ( ( , ( ))) ( , ( ))P V t x t V t x t   for all 1   , 

1[ , )
qk k Tt   , k Z  then 

( , ( )) ( ) ( ( , ( ))) ( ) ( ( , ( )))qV t x t h t H V t x t g t G V t x t   ,
1[ , ) ,

qk k Tt k  

 Z , 

where 
0

sup ( )
t

h t


   and ( )P s s  for 0s  ; 

(iv) 
0

inf{ ( ) ( )} 0
t

g t h t


  , where
0

( )
= lim

( )s

H s

G s



 . 

Then the zero solution of (1.1) is uniformly stable. 

 

Proof.  Since a K , from condition (iii) and (iv), one may choose a small enough *

1(0, )  such that 

( )
( ) ( )

( )

H s
g t h t

G s
   holds for all 0t  and *(0, ( ))s a  .            (3.3) 

In fact, since 
0

( )
= lim

( )s

H s

G s



  , we know that for any given 0  ， there exists a ( ) 0       such 

that
( )

, (0, )
( )

H s
s

G s
           . In particular, let 

2M


  , where 

0
inf{ ( ) ( )} 0
t

g t h t 


    and 
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0

sup ( )
t

M h t


   . Then there exists a small enough ( , ) 0M      such that 

( )
, (0, )

2 ( ) 2

H s
s

M G s M

 
        . 

Note that a K , one may further choose a small enough *

1(0, )  such that *( )a    . 

Hence, it can be deduced that 

( )
( ) ( ) ( )( ) ( )

2 ( )

H s
g t h t h t h t

M G s


        

for all 0t   and *(0, ( ))s a  . 

For any 
0[ , )

qTt   , let ( ) ( ; , )x t x t    be a solution of (1.1) through ( , )  . For any given 
*(0, )  , 

one may choose a ( ) 0    such that 1( ) ( )b a   , where
1

(1 )k

k

 




  . Next we show that 

( )PCB   

Implies ( )x t  , [ ,
qTt  ） . First, it is obvious that 

1( ( ) ) ( , ( )) ( ( ) ) ( ) ( ),  [ ,+ )
qTa x t V t x t b x t b a t         .    (3.4) 

Suppose that 
1[ , )

qm m T    for some m Z . Next we show that 

1( , ( )) ( ),   [ , )
qm TV t x t a t     .                (3.5)  

If this assertion is not true, then there exists some 
* [ , )

qm Tt   such that 
* * 1( , ( )) ( )V t x t a  , and 

1 *( , ( )) ( ),  [ , ]
qTV t x t a t t    , so 

* *( , ( )) 0qV t x t  . Then it follows from (3.4) that 

* * * * 1 * *( ( , ( ))) ( , ( )) ( ) ( , ( )), [ , ]
qTP V t x t V t x t a V s x s s t t      .        (3.6) 

Note that 
*

1     and by (i), it can be deduced that 

1 * *

1( ( ) ) ( , ( )) ( ) ( ) ( ),  [ , ]
qTa x t V t x t a a a t t t         , 

which implies that 

* *

1( ) ,  [ , ]
qTx t t t t     .    (3.7) 

By (3.3), (3.6), (3.7) and the fact that 
1 *( ) ( ) ( )a a a      , using (iii) we obtain 

* * * * * * * *( , ( )) ( ) ( ( , ( ))) ( ) ( ( , ( )))qV t x t h t H V t x t g t G V t x t    
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* 1 * 1( ) ( ( )) ( ) ( ( ))h t H a g t G a       

1
1 * *

1

( ( ))
( ( ))[ ( ) ( )] 0

( ( ))

H a
G a h t g t

G a

 
 

 





   , 

which is a contradiction with 
* *( , ( )) 0qV t x t   and thus (3.5) holds. 

Considering (3.4) and (3.5), it can be deduce that
1( ) ,  [ , )

qm m Tx t t    , i.e., 

1( ) ([ , ) , ( )}
qm m Tx t PC S   . 

Then by (ii), we have 

1

( , ( )) ( , ( ( )) ( ( )))

                    (1+ ) ( , ( )) (1+ ) ( ).

m m m m m m m

m m m m

V x V I x J x

V x a

    

     

 

  

 

 
 

By the same argument, we may prove that for 
1[ , )

qm m Tt    , 

1( , ( )) (1+ ) ( ).mV t x t a    

By simple induction, we can prove that for
1[ , ) [ , ) ,

q qm T k k Tt k m      , 

1

1 2( , ( )) (1+ )(1+ ) (1+ ) ( ) ( )kV t x t a a       , 

which implies that 

( ( ) ) ( , ( )) ( ),  [ , )
qTa x t V t x t a t     . 

So ( ) ,  [ , )
qTx t t    . The proof of Theorem 3.2 is complete.  
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