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Abstract:Programming testing is an action to discover most extreme number of blunders which have not been 

found yet with ideal time and exertion. As the product advances the span of the test suite and develops with new 

experiments being added to the test suite. Be that as it may, because of time and asset requirements rerunning all 

the experiments in the test suite isn't conceivable, each time the product is adjusted, keeping in mind the end 

goal to manage these issues, the test suite size ought to be sensible. In this paper a novel approach is exhibited to 

choose a subset of experiments that activity the given arrangement of necessities with for information stream 

testing. With a specific end goal to, express the viability of the proposed calculation, both the current Harrold 

Gupta and Soffa (HGS) and Bi-Objective Greedy (BOG) calculations were connected to the produced test 

suites. The outcomes acquired from the proposed calculation were contrasted and the condition of-workmanship 

calculations. The aftereffects of the execution assessment, when contrasted with the current methodologies 

demonstrate that, the proposed calculation chooses close ideal experiments that full fill greatest number of 

testing necessities without bargaining on the scope angle. 

Keywords:Test suite, experiments, coverage, testing, goal product. 

 

I. INTRODUCTION  
Software testing is a vital activity in the development of software to find bugs as early as possible. The 

objective of software testing is to detect faults in the program and therefore, provide more assurance for 

customers on the quality of the software. Any software that is developed and put into use may be subjected to 

addition or modification of existing features. With a tremendous number of possible test cases available as 

software evolves, testers have no means to control the size of the test suite. The literature survey [10, 12] throws 

light upon the fact that software testing consumes a greater chunk of the development cost. With software 

projects also being subjected to time and resource constraints, ways to address test suite reduction has become a 

topic of interest among researchers. During test case generation or after creating the test suite, the effectiveness 

of the test process can be improved if a minimal subset of test cases could be determined to exercise all the test 

requirements as the original test suite. Apparently, the lesser the number of test cases, the lesser time it takes to 

test the program which consequently reduces the computational effort of running the entire test suite. 

Nonetheless, another imperative issue to be tended to amid test suite diminishment is the scope angle. 

Likewise, scope based lessening procedures ought to guarantee that greater part of the execution ways of the 

given program are worked out. The general ramifications from  

The past research work [15, 18] is that test case(s) that don't add to the scope of a test suite will probably be 

incapable in fulfilling the predefined necessities. From the writing overview it can be derived that test suite 

lessening approaches essentially diminish the extent of the test suite [2, 3, 16]. In any case, how far the lessened 

test suite got full fills the test metric(s) under thought is an imperative issue to be tended to. Indeed, some 

potential downsides saw in test suite lessening review includes arbitrary choice of experiment in case of a tie (at 

least two experiments fulfilling a similar arrangement of necessities), complex scientific operation for test suite 

decrease, nature of test case(s) [7, 14] and so on., Thus, the exchange off amongst scope and ideal experiment 

choice is key in test suite diminishment. 

In this paper another calculation for Test Suite Reduction called Coverage Based Test Suite Reduction 

(CBTSR) has been proposed. The commitments of this paper incorporate the accompanying:  
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 Identifying an ideal delegate test set including experiments which are identified with the given testing 

objective. 

 Applying information stream testing to produce test cases and prerequisites to analyse the physical 

structure of the program and find sub-ways navigated by factors.  

 Using the proposed CBTSR calculation for test suite decrease. 

 Performing a set of empirical studies on ten subject programs. Then comparing the relative 

performance and effectiveness of the proposed reduction algorithm with the state-of-art Harrold Gupta 

and Soffa (HGS) [7] and Bi-Objective Greedy (BOG) [14] algorithms. 

 
II. TEST SUITE REDUCTION PROBLEM 

As indicated by the meaning of test suite issue given [7, 10]:  

 A test suite T of experiments {t1, t2, t3... tn}, known as all-inclusive test suite.  

 An arrangement of testing prerequisites {r1, r2,..., rm} that must be secured to give the coveted scope 

to the program under thought.  

 Subsets {T1, T2,...Tm} of T known as test sets where each test set is related with ri, to such an extent 

that any one test case(s) having a place with Ti full fills ri.  

The goal of test suite minimization issue is to locate the delegate set (diminished test suite) Trs that 

activities a similar arrangement of those exercised by the original test suite T. 

 

2.1. Background: 

The issue of finding the delegate set is compared to the set-cover issue [10]. The set-cover issue has 

been appeared to be NP finished [7] in HGS calculation. By the by, there has been some examination work [7, 

14] in the territory of processing ideally limited test suites. The vast majority of the other research works in test 

suite minimization have however depended on heuristics for registering close ideal arrangements [2, 3, 11, 16, 

17]. A few methodologies have been proposed in writing [1, 2, 4, 7, 8, 9, 11, 14, 16, 17] for tending to test suite 

diminishment issues. Practically speaking test suite lessening approaches by and large concentrate on expelling 

old and excess experiments from the general test suite [14]. The goal of test suite minimization in programming 

testing is to hold the best experiments just [14, 15]. Further, these experiments ought to be equipped for 

fulfilling the most number of test prerequisites and thus likewise uncover the deficiencies in presence. 

Alongside the test suite lessening systems, use of scope angles is additionally essential. Scope criteria [7, 8, 9, 

11], for example, branch scope, articulation scope, information stream scope, MC/DC and call stack scope to 

give some examples, practice more noteworthy affirmation to the quality, dependability and ceasing rules [4, 5, 

6, 12, 18] for test engineers. 

HGS calculation proposed by Harrold et al. [7] has drawn a ton of consideration towards test suite 

decrease. This calculation utilizes the idea of cardinality (number of event of an experiment in each test set) to 

lessen the test suite estimate. It starts the test suite minimization process by choosing singleton test cases (test 

cases with cardinality one) and continues to the following higher cardinality test cases. Likewise, the as of late 

proposed BOG calculation by Saeed and Alireza [14] utilizes complex grid operations to decrease the test suite 

estimate. Be that as it may, a potential downside of the HGS calculation is the irregular choice of experiments 

amid test suite lessening in case of a tie. Further, in BOG calculation the requests in which test sets are subjected 

to diminishment antagonistically influence the estimations of the agent set. Thus, from the writing study it is 

very evident that there is a requirement for investigate work to concentrate on issues emerging while at the same 

time streamlining the test suite estimate. In the following area the CBTSR calculation is portrayed with a case. 

 

III. TEST SUITE REDUCTION ALGORITHM  
3.1. Related Concepts  

The quantity of prerequisites R might be limited or boundless. Be that as it may, from an even minded 

perspective, it is expected that R is limited. For every prerequisite, ri ⊂ R, there is an experiment tj in the info 

area that fulfills it. Subsequently, a limited test suite T additionally exists. The factors m and n are utilized to 

signify the extent of R and T, separately. The Boolean framework an of size m × n is utilized to depict the 

fulfilment connection amongst prerequisites and test sets with the end goal that ∀ ri∈R and ∀ tj∈T Equation 1: 

 
where, for i=1,2,…,m and j=1,2,…,n. 
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The sum vector S represents the count of all “1”in the ith row of aij. The representation of vector S is denoted in 

Equation 2: 

 
Thus, the simplification can be further done on sum of vector values as given in Equation 3: 

  S={ci},i 1 to m 

Where, ci=nj=1 aij 

 

In the process of test suite reduction, the mapping f: T→R can be defined as a Boolean function. The coverage 

relationship expressed as a requirement matrix can be considered as the satisfaction relationship among test 

requirements and test cases inthe optimal representative set selection problem. Thus, the Boolean function 

simplification problem can be equated to the optimal representative set selection problem. 

 

3.2. CBTSR Algorithm  

The calculation CBTSR demonstrates the age of the diminished test suite through basic numerical 

operations. In the calculation the accompanying suppositions were made: Let n signify the quantity of 

experiments in a test set and m mean the quantity of test necessities. The other related issues are: Each test set Ti 

comprises of experiments comparing to a necessity. The diminishment procedure in the proposed CBTSR 

approach starts with the development of experiment necessity grid 'A'. This lattice maps the experiments with 

the testing prerequisites. A relationship between an experiment and necessity is demonstrated by one or zero 

generally. In the network each ith push signifies the prerequisite scope and each jth segment means the 

experiment cover with the requirement(s). The calculation initially incorporates all the experiments tjs that 

happen as a solitary component in the test set Tis (singleton experiment), to the brief set Ts. At that point: 

 

Algorithm 1: CBTSR 

Input:Test cases in the given test sets along with requirements. Test Sets: T1,T2, ...,Tm.   Associated 

requirements: r1,r2,..., rm. Test cases: t1,t2,...,tn. 
Output:Reduced test suite. Trs a representative set of T1, T2,..., Tm. 
BeginA: is a Boolean matrix, 1-covered and 0 – uncovered. sel_tc:= {}: selected test cases returned by the 

subroutine. Select optimal (). list_t: list of test caseslist_r: list of requirementsTs:={}: selected singleton test 

casesTtemp:={}: temporarily selected test casesalgorithm CBTSR 

{ 

Begin 
          list_t : =all tj ∈ T //Contains all the test cases. list: =all ri ∈ R //Contains all the requirements construct  

the matrix A; //matrix denoting relationship between requirements and test cases for each ri do. Construct the 

vector S //Vector consisting of sum of the elements from row 1.m of matrix A  

Ts: =∪ Ti; //Assign test set(s) with row sum= 1 to the temporary set Ts. update list_t:= remove all tj selected;  

// Update by removing all the marked test cases update list_r:= remove all ri selected; 

//Update by removing all the marked requirements  

endfor//Consider unmarked requirements where i→1 to m and  

select the   Corresponding test set  

for each Ti such that there exists ri do sel_tc=select optimal(list_r, list_tc);  //Invoke the subroutine by passing 

the list of test cases and requirements  

update list_t:= remove all tj selected 

// Update by removing all the marked test cases  

update list_r:= remove all ri selected; 

//Update by removing all the marked requirements Ttemp := ∪ { sel_tc}; // distinct test cases withhighest 

coverage value 
endfor   Trs = Ttemp ∪ Ts // union of all distinct optimal test cases end  

}end CBTSR  

Subroutine 1: select optimal (list_r, list_t)  

/*selects test sets to be included in the representative set */   Input: unmarked test cases and 

requirements  Output: Representative set   S: integer vector denoting number of requirements covered by a test 

sets  
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T: test set with highest coverage value   max(): returns S vector row(s) having highest sum value  

Begin {  

reconstruct the vector S; // sum of requirements covered by test cases   if max(S) > 0  

return (T=max(S)); // return the row with the highest  

value to the variable sel_tc else  

return; // return to the main program }  

end  

end select_optimal  

 

The comparing events of the prerequisites ris and, test cases tjs in the experiment prerequisite grid are then reset 

to the esteem zero as spoke to in Equations 4 and 5. Condition 4 resets every one of the components in section 'j' 

to the esteem zero and Equation 5 resets every one of the components in push I to the esteem zero. This is trailed 

by expelling the experiment and prerequisite from the rundowns: list_t and list_r. At that point, the subroutine 

select_optimal() is recursively called to choose the rest of the experiments: 

    A[All, ti]=0                         (4) 

A[ri]=0                               (5) 

Another subroutine max() when conjured restores the row(s) with the most extreme test case(s) covering the 

given prerequisite, from the vector S. The tjs set apart in row(s) returned are added to another transitory set T . 

Again the comparing necessity r s and t s temp ij are reset to the esteem zero and the points of interest of the 

same are additionally refreshed in the rundowns. The calculation recursively chooses test cases and updates the 

experiment necessity network and records containing the chose test cases/prerequisites, until the point when the 

vector S returns value(s) more prominent than zero. At long last, the unmistakable experiments in Ttemp are 

joined with test cases in Ts to create the delegate set Trs. The most pessimistic scenario run time for the 

proposed calculation CBTSR constitutes an opportunity to stamp the experiment necessity framework o (n • m ). 

Computing the vector S and selecting test case(s) requires: 

O ⎛m(m +1)/2⎞. 
byfollowing assumptions, the complexity of proposed algorithm becomes O(m2). 

 

3.3. Concept Illustration  

With a larger part of projects written to deal with information, variable use winds up plainly essential. 

In such situations, the idea of information stream testing can be utilized to analyze the factors. It incorporates 

the definition and task of variable(s) all through the program. The ways from focuses where every factor is 

characterized to focuses where it is referenced are called definition-utilize sets or DU-sets. The experiments are 

produced in view of all conceivable stream of information from the statement to the task. Additionally the DU-

sets acquired are utilized as a foundation to evaluate the scope of prerequisites by the agent set, Trs. To show the 

proposed CBTSR calculation and the condition of-craftsmanship calculations like HGS and BOG, a speculative 

program is recorded underneath. 

 

Program 1: Odd _ Even  

1. Program odd_even 

2. Var n 

3. Input(n) 

4. If(n>0) 

5.   print(“Number positive”+n) 

6.   else 

7.        print(“Number negative”+n) 

8.        neg_no=n 

9.        n=num_convert(neg_no) 

10.  print “Natural Number determined” 

11. if(n%2==0) 

12.  print(“Number even”+n) 

13. else 

14.   print(“Number odd”+n) 

15. print “Type of Number determined” 

16. End program  

 

The experiments are produced in view of all conceivable stream of information from the assertion to 

the task. Essentially the DU-sets acquired are utilized as a basis to survey the scope of necessities by the agent 
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set. In the control stream diagram Figure 1 the announcements of the frame 'n:=' speaks to meaning of n and 

':=n' employments of the variable n. Through information stream investigation the DU-sets are produced to fill 

in as prerequisites for testing the odd/even program. For the program odd even, there are two characterizing 

hubs in Statements 3, Statement 9 and six use hubs in Statements: 4, 5, 7, 8, 11, 12, 14 along these lines, 

prompting four DU-ways as showed in Table1. 

From the qualities in Table 1, each execution way is thought to be practically equivalent to an 

experiment. From the DU-ways the comparing DU-sets are classified as demonstrated in Table 2. These DU-

sets fill in as seat marks for developing the test sets Ti with the related experiments tj. Table 2 portrays the test 

sets for the sample program. Thus, the universaltest suite T={t1, t2, t1, t2, t3, t4, t1, t3, t2, t4, t3, t4, t3, 

t4,t3,t4t}was generated for sample consideration. 

 
Figure 1: Control Flow Graph for odd even program 

 

Table 1 

Beginning experiment necessity lattice for the program 

 
Table 2 

Test sets produced for the DU sets.  

 
 

The lessening procedure for the proposed CBTSR, HGS and BOG calculations starts with the 

development of experiment prerequisite grid as in Figure 2. In the framework and, each line speaks to the 

prerequisite ri and every segment the experiment tj. 
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Figure2. Beginning experiment necessity lattice for the example program. 

In the proposed CBTSR calculation, from the vector Srow7androw8havearowcountofone.These 

columns speak to singleton test cases with cardinality one that relates to DU combine (B3, B6) and (B3, B7). 

These DU sets are spoken to by test cases t3 and t4. The two experiments are chosen into the impermanent set 

Ts. The rundowns: list_t and list_r are refreshed by evacuating these experiments and necessities. The lines 7 

and 8 covering the necessities and the segments speaking to test cases t3 and t4 are reset to zero in the 

experiment prerequisite grid. At that point the capacity select_optimal() is conjured. This decides the line tally 

of the experiment necessities network, trailed by recomputing the estimations of the vector 'S'. At that point, the 

greatest esteem is resolved from the vector 'S', which is associated with the necessity and the relating 

experiments fulfilling the prerequisites. The experiments are then added to the brief set Ttemp and the procedure 

repeats till the vector 'S' contains values more noteworthy than zero. At long last, the estimations of 

impermanent sets Ts and Ttemp are consolidated to create the delegate set comprising of {t1, t2, t3, t4}. In the 

HGS calculation the cardinality of all the eight test sets i.e two, four, two, two, two, two, one, one are figured. 

At that point, test sets with cardinality one (singleton test cases) are added to delegate set i.e, t3 and t4. This was 

trailed by denoting the occurrence of these experiments in the test sets, T2, T3, T4, T5, T6, T7 and T8. The 

calculation, at that point continues with the following higher cardinality which is two. The main test set 

accessible is {t1, t2}. Since, there is a tie included, the principal experiment t1 in the test set T1 was picked 

indiscriminately into the agent set. 

In the BOG calculation, the experiment prerequisite lattice is developed and increased by its transposed 

framework to produce the multiplied grid. The most extreme estimation of the askew component in the 

increased lattice is five. At that point, the whole of the components in the ith line of the duplicated framework, 

aside from the inclining component is processed. From this calculation the experiment with the most extreme 

esteem is resolved as t3 and place in a rundown called maxList. Likewise the experiment with the base esteem is 

resolved as t1 and place in a rundown called minList. Both the maxlist and minlist esteems are then subjected to 

convergence operation to decide whether there were any normal esteems. As there are no normal esteems, a 

subroutine to decide the ideal experiment is conjured. This subroutine restores the experiment to the delegate set 

as t1. At that point, the askew components of the duplicated network are refreshed for unselected experiments. 

This procedure emphasizes lastly the delegate set created comprises of {t1,t3,t4,t5}.  

The outcomes from Table 3 demonstrate that when HGS calculation is utilized, one DU-combine (B1, B7), 

which decides whether the normal number is odd was not chosen in the delegate set Trs. Advance the 

experiments chose into the delegate set, acquired utilizing BOG calculation additionally did not choose the DU-

combine (B1, B7). Hence, the actual objective to determine whether a positive number is odd or even could only 

be partially tested using the test cases in the representative set, of both HGS and BOG algorithms Table 3. 

However, retesting the sample program using the test cases in the representative set Trs of the proposed CBTSR 

algorithm provides the desired coverage of all DU-pairs Table 3 and also satisfies all the requirements to 

determine whether a number is odd or even.  
 

Table 3 

Delegate Set Acquired For Odd/Even Program. 

 
 

IV. EXPERIMENTS AND ANALYSIS 
An empirical study was conducted to evaluate the proposed CBTSR algorithm and state-of-art 

algorithms, using ten program units each consisting of 11 to 24 lines of coding that cover a wide range of 

applications. The program description along with the lines of coding is shown in Table 4. The selection of test 

cases was done using Rapps and Weyuker data flow criterion [13]. Each program considered for 

experimentation used DU-pair(s) that were hand- instrumented. All the test suite reduction approaches 

considered in this work had been implemented using Java. 
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Table 4 

Depiction of Program Units. 

 
 

The accompanying test measurements are utilized to decide the execution of the proposed CBTSR 

approach and condition of-workmanship calculations:  

• The level of Requirement Coverage (RCov) is characterized in Equation 6: 

 
Where, | Rtot | means the aggregate number of test prerequisites under thought amid test determination and 

|Rcov| is the quantity of necessities fulfilled by the test cases in the agent set. Higher RCov implies better 

necessity scope by the agent set Trs.  

• The level of test Suite Size Reduction (SSR) [14, 15] is characterized as in Equation 7: 

 
Where, |T| means the quantity of experiments in the first test suite and |Trs| the quantity of experiments in the 

delegate set. Ideal SSR with better RCov is attractive.  

• Test SSR: For the subject program considered, the size metric was assessed for the proposed CBTSR 

and condition of-workmanship calculations utilizing Equation 6. From the outcomesgot as indicated 

graphically in Figure 4, it could be deduced that CBTSR gave limitedtest suites running 

between66.67% to84.62%.Assist the normal test SSR acquired for CBTSR was 74.77% whichwas 

marginally not as much asHGS (79.5%)andBOG (82.9%). 
• RCov: The following metric assessed was the necessity scope by the agent sets. The perceptions made 

amid experimentation demonstrated that the prerequisite scope was reliably high. In spite of the fact 

that the normal test SSR was high when utilizing HGS and BOG calculations, the normal RCov was 

insignificantly less when contrasted with the proposed CBTSR approach. Accordingly, the normal 

estimations of the test measurements considered amid execution assessment for the proposed CBTSR 

calculation was superior to anything the condition of-craftsmanship calculations Figure 4. 
 

From the trials directed, the perceptions made are outlined as takes after:  

• HGS calculation concentrated on the cardinality of test sets to build the agent set. In the HGS 

calculation the recursive capacity for test suite minimization was summoned atleast once, to break the 

ties among similarly imperative experiments. In this calculation such recursions backed off the 

minimization procedure. Promote on account of a tie between test cases, irregular experiment choice 

likewise changed the scope of prerequisites. 

• The proposed CBTSR test suite diminishment calculation expelled excess experiments presented 

amidprogram improvement and held just the best experiments that added to the necessity scope. The 

experiments that were held could likewise give the greatest necessity scope. From Figure 4 it is very 
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clear that when CBTSR calculation was utilized, the experiments in the agent set Trs fulfilled more 

number of prerequisites and accordingly along these lines offered better scope by navigating more DU-

ways in a given program. 

 
 

V. CONCLUSION 
The commitments of this work concentrate on enhancing the viability of programming testing 

downstream as unit testing. In spite of the fact that, there has been some current work around there, in the 

present work endeavours have been made to decrease the extent of the test suite utilizing a basic approach that 

spotlights on the test measurements: Size and necessity scope. The proposed CBTSR calculation produced a 

decreased test suite iteratively utilizing straightforward grid operations. The execution assessments of the 

proposed CBTSR approach demonstrate that:  

 

1. CBTSR calculation offered reliably preferable RCov over the condition of-workmanship calculations HGS 

and BOG.  

2. Be that as it may, the normal test SSR of the proposed CBTSR (74.77%) was insignificantly not as much as 

the condition of-craftsmanship calculations HGS (79.5%) and BOG (82.9%).  

 

Along these lines, from the perceptions made in this work it can be surmised that CBTSR decreases the 

measure of the test suite by holding experiments that offer most extreme RCov. In future this work might be 

stretched out for another test metric to decide the blame discovery capacity. 
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