
International Journal of Latest Engineering and Management Research (IJLEMR) 
ISSN: 2455-4847 
www.ijlemr.com || Volume 02 - Issue 09 || September 2017 || PP. 36-40 

www.ijlemr.com                                                    36 | Page 

 

Quasi-Static Approach of A Transient Heat Conduction Problem 

of Semi-Infinite Solid Elliptical Cylinder And Its Thermal 

Deflection  
 

Lalsingh Khalsa 
(Department of Mathematic, M.G. College, Armori, Gadchiroli (MS), India  

 

Abstract: This paper deals with a transient heat conduction problem and determination of quasi-static thermal  

deflection of a semi-infinite solid elliptical cylinder subjected to arbitrary initial heat supply on the lower  

surface with the curved surface having zero heat flux. The numerical calculations have been carried out  for a 

copper cylinder and illustrated graphically. 
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I. INTRODUCTION  

The solution of heat conduction problem gives the possible measures and  thermoelastic behavior of the 

metallic bodies of any shape. Fatigue cracks have been one of the main sources of structural failures in machines 

for two centuries. The application of fracture mechanics to engineering design has led to more efficient use of 

structures and components, which leads to great economic benefits by avoiding premature retirement of 

serviceable machines. However, there are still some aspects of fatigue that remain partially understood, such as 

the crack closure effect. This lack of understanding arises principally from the difficulties associated in 

quantifying the phenomenon and measuring its effect on the crack driving force [1]. 

Unfortunately, there are only few studies concerned with steady and transient state heat conduction 

problems in elliptical objects. McLachlan [8,9] obtained mathematical solution of the heat conduction problem 

for elliptical cylinder in the form of an infinite Mathieu function series considering special case with neglecting 

surface resistance.  Choubey [2] also introduced a finite Mathieu transform whose kernel is given by Mathieu 

function to solve heat conduction in a hollow elliptic cylinder with radiation. Sugano et al. [3] dealt with 

transient thermal stress in a confocal hollow elliptical structures with both face Transient Thermoelastic 

Problem in a Confocal Elliptical Disc with Internal Heat Sources surfaces insulated perfectly and obtained the 

analytical solution with couple-stresses. Sato [4] subsequently obtained heat conduction problem of an infinite 

elliptical cylinder during heating and cooling considering the effect of the surface resistance. However, there 

aren’t many investigations done or studied to successfully eliminate thermoelastic problems Dhaba[5] studied a 

problem of plane, uncoupled linear thermoelasticity for an infinite, elliptical cylinder by a boundary integral 

method 

 

II. FORMULATION OF THE PROBLEM 

Consider a semi-infinite solid elliptical cylinder occupying the space  with radius 0 
 and 0 ≤ z ≤ ∞ 

. Let the lower surface be subjected to arbitrary initial temperature and a curved boundary surface 0 
 is at 

zero heat flux. Under these more realistic prescribed conditions the quasi-static thermal deflection in the 

cylinder are required to be determined. 

The heat conduction equation and boundary conditions are given as 
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with boundary conditions 
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Where, α is the thermal diffusivity of the material of the cylinder 

The most general form of the equation of equilibrium for a plate element is expressed in terms of the 

partial derivatives of the deflection is found to satisfy the differential equations as  
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Where D is the stiffness coefficient of the plate and denoted as 
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and M is bending of the plate due to change in the temperature and expressed as 





0

dzzEM 
         (7) 

in which 
2  denotes the two-dimensional Laplacian operator in ),(  ,   denotes Poisson’s ratio,

  and E denoting coefficient of linear thermal expansion and Young’s Modulus of the material of the plate 

respectively. 

In order to complete the formulation of the problem, it is necessary to introduce suitable boundary 

conditions. The plate edgeis assumed to be fixed and clamped, that is  
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The equations (1) to (9) constitute the mathematical formulation of the problem under consideration. 

 

III. SOLUTION OF PROBLEM 

To obtain the expression for temperature ),,,( tz one assumes that, 
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where mnq ,2  are the positive roots of the transcendental equation ),( ,202 mnn qCe  . Also 

),( ,22 mnn qce   and ),( ,22 mnn qCe   are Mathieu and Modified Mathieu functions respectively given by [7] 

Equation (1) and (10), gives  
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Where,  mnA ,  is a constant which can be found from the nature of the temperature at the lower surface 

of the  cylinder and 
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Thus, the expression of the temperature becomes, 

),(),(])1(exp[),,,( ,22

1 0

,22

2

,2, mnn

m n

mnnmnmn

z qceqCetAetz  








     (12) 

Hence by the theory of the Mathieu Function [11] we get 
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Using temperature distribution from equation (12) in equation (7) the expression for thermal bending 

moment can  be obtained as 
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Thus substituting equation (15) in (5), one obtains  
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IV. NUMERICAL CALCULATIONS 
The numerical calculations have been carried out for a copper cylinder with the following material 

properties. 

Then, setting 

2)0()(),(  f
 00 T                                                                                                                           (17) 

Substituting the value of equation (17) in equations (12), (15) and (16), we obtained the expressions for the 

temperature, thermal moment and thermal deflection respectively for our numerical discussion. The numerical 

computations have been carried out for Aluminum metal with parameter a = 2.65 cm, l = 6.00 cm, Modulus of 

Elasticity E = 6.9  106 N/cm2, Shear modulus G = 2.7  106 N/cm2, Poisson ratio   = 0.281, Thermal 

expansion coefficient, t  = 25.5  10-6 cm/cm-0C, Thermal diffusivity  = 0.86 cm2/sec, Thermal conductivity 

 = 0.48 cal sec-1/cm 0C with 
mnq , 0.0986, 0.3947, 0.8882, 1.5791, 2.4674, 3.5530, 4.8361, 6.3165, 7.9943, 

9.8696, 11.9422, 14.2122, 16.6796, 19.3444, 22.2066, 25.2661, 28.5231, 31.9775, 35.6292, 39.4784 are the 

positive & real roots of the transcendental equation  ),( ,22 mnn qaCe . The foregoing analysis are performed by 

setting the radiation coefficients constants, )2,1(86.0  iki  so as to obtain considerable mathematical 

simplicities. Numerical  calculations are depicted in the following figures with the help of MATHEMATICA 

software. 

From Fig. 1. (a) and Fig. 1.(b), it is clear that the temperature falls as the time proceeds along radial direction 

and is greatest in a steady & initial state, it can be seen that the temperature change on the heated surface 

decreases when the radius of plate increases for different thickness. 

From Fig 2. (a), it can be depicts that deflection is maximum initially and decreases with time, same nature of 

thermal deflection can be observed on radial direction. 

 
Fig. 1 (a)Temperature distribution versus   at z= 3.7,= 90. 
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Fig. 1 (b)Temperature distribution versus   at z=0,= 90. 

 

 

 

 
Fig. 2 (a)Temperature distribution versus t  at fix   . 
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Fig. 2 (b) Deflection  versus   at z=0,= 90. 

 

V. CONCLUSION  
The analysis of non-stationary two-dimensional heat conduction equation is investigated with the 

integral transformation. With proposed integral transformation method, it is possible to apply widely to analysis 

stationary as well as non- stationary temperatures. Further the study is extended to find the thermal deflection 

using thermal bending moment using elliptical coordinate system.  
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