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Abstract：We consider the existence of positive solutions for boundary value problems of a class of nonlinear 

.q - difference equations . Firstly, analysis some properties of the Green function. The second, by applying a 

fixed point theorem in cones we investigate the existence of positive solutions for the boundary value problems .  
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1. Introduction 

In 1949 Hahn [1] introduced the .q -difference operator .qD  , say Hahn’s difference operator. It 

has been applied successfully in construction of families of orthogonal polynomials as well as in approximation 

problem [2-4]. However, during 68 years, few authors have studied Hahn’s quantum calculus. We refer reader to 

the monographs of Aldwoah [5] [6], Bangerezako [7] and Artur M. C Brito da cru Z [8]. 

In this paper, we consider the boundary value problem of following .q - difference equation . 
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By using both the fixed point theorem, we show that existence of the positive solution for the problem (1) (2). 
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Provided that the series converges at , .x a x b 
 
In that case, f  is called .q

 
integrable  on [ , ]a b . 

We say that f is .q  integrable  over  if it is .q integrable  on [ , ]a b for all , .a b  

Lemma 1.  Assume that :f    is continuous at 
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Therefore, (4) holds. 

Lemma 3.  Assume that 
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be given. The unique solution of the problem(1) (2) is the function
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Lemma 4.  Let ),( stG be Green’s function given in the statement of Lemma 3, then ),( stG satisfies the 

following conditions: 
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Thus Lemma 4 holds. 

Lemma 5.  Let be a Banach space and P  be a cone in . Assume 1 and 2 are open subsets of 

 with 10 , 21  ,and let 2 1: ( \ )T P     is completely continuous operator such that , 

ether 
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 (ii) Ty y , 1y P  , Ty y , 2y P   

Then T has a fixed point in 2 1: ( \ ).T P    

3. The main results 

In this section, we give the existence of positive solutions of problem (1) (2). We notice that x solves 

(1) (2) if and only if x is a fixed point of the operator 
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Where G  is Green’s function derived in Lemma 3 and :T  , where  is the Banach space consisting 

of all maps 0[ , ]b   when equipped with the usual supremum norm  . 

Let us also make the following declarations, which will be use in the sequel. 
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Let us also introduce two conditions on the behaviour of f that will be useful in the sequel. These are standard 

assumptions on the growth of the non-linearity .f  

 1C There exists a number 0r  such that ( , )f t x r , whenever 0 .x r   

 2C  There exists a number 0r  such that ( , )f t x r , whenever .r x r    

Where  is the constant deduced in Lemma 4. 

We now can prove the following existence result. 

Theorem 1. Suppose that there are distinct 1 2, 0r r  such that condition  1C holds at 1r r and condition 

 2C holds at 2.r r Suppose also that ( , ) 0f t x  and continuous. Then the boundary value problem (1) (2) 
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has at least one positive solution, say 
0x , such that 

0x  lies between 
1r and 

2r . 

Proof. We shall assume without loss of generality that 
1 20 r r  , consider the set  
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whence Tx , as claimed. Also, it is easy to see that T is a completely continuous operator. Now, put 

1 1{ , }.x x r    Note that for 1x ,we have that 
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whence we find that .Tx x Thus T is a cone compression on 1 . 

Next, put 2 2{ , }.x x r    Note that for 2x ,we have that 2x r so that condition  
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whence we find that .Tx x Thus T is a cone expansion on 2 . So, it follows by Lemma 5 that 

the operator has fixed T point. It means that (1) (2) has a positive solution with 1 0 2.r x r   

 

Theorem 2. Assume that there exists a constant 0M  such that  
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Then (1) (2) has a solution, say 
0 ( )x t such that 

0 ( )x t M , for each 
0[ , ].t b  

Proof.  Let T be the operator defined by (5). Denote  
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We see that : M MT   . Consequently, we conclude by the Brouwer theorem that T has a fixed point 

0 Mx  with 
0 .x M  
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