Existence of positive solutions for second order nonlinear $q . \omega$ - difference equations

Changfa Yang, Chengmin Hou *
Department of Mathematics, Yanbian University, Yanji 133002, P. R. China
*corresponding author Email addresses:cmhou@foxmail.com

Abstract

We consider the existence of positive solutions for boundary value problems of a class of nonlinear $q . \omega$-difference equations . Firstly, analysis some properties of the Green function. The second, by applying a fixed point theorem in cones we investigate the existence of positive solutions for the boundary value problems .

Keywords: $q . \omega$-difference equations; boundary value problem; cones; existence of solutions.

1. Introduction

In 1949 Hahn [1] introduced the $q . \omega$-difference operator $D_{q . \omega}$, say Hahn's difference operator. It has been applied successfully in construction of families of orthogonal polynomials as well as in approximation problem [2-4]. However, during 68 years, few authors have studied Hahn's quantum calculus. We refer reader to the monographs of Aldwoah [5] [6], Bangerezako [7] and Artur M. C Brito da cru Z [8].

In this paper, we consider the boundary value problem of following q. ω-difference equation .

$$
\begin{gather*}
\left(D_{q, \omega}^{2} x\right)(t)=-f(t, x(t)), \quad \omega_{0}<t<b, \tag{1}\\
x\left(\omega_{0}\right)=x(b \neq \quad 0 . \tag{2}
\end{gather*}
$$

By using both the fixed point theorem, we show that existence of the positive solution for the problem (1) (2).

2. Preliminaries

Let $q \in(0,1)$ and $\omega>0$. We introduce the real number $\omega_{0}=\frac{\omega}{1-q}$. Let I be a real interval containing ω_{0}. For a function f defined on I , Hahn's difference operator $D_{\text {q. } \omega} f$ is given by

$$
\left(D_{q . \omega} f\right)(x)=\frac{f(q x+\omega)-f(x)}{(q-1) x+\omega}, x \neq \omega_{0}, \quad\left(D_{q . \omega} f\right)\left(\omega_{0}\right)=f^{\prime}\left(\omega_{0}\right)
$$

Definition $1{ }^{[7]}$. Let $a, b \in \mathrm{I}$ and $a<b$. For $f: \mathrm{I} \rightarrow \square$ the $q . \omega$-integrals is defined by

$$
\begin{gather*}
\int_{a}^{b} f(x) d_{q \cdot \omega} x=\int_{\omega_{0}}^{b} f(x) d_{q \cdot \omega} x-\int_{\omega_{0}}^{a} f(x) d_{q \cdot \omega} x, \\
\int_{\omega_{0}}^{x} f(t) d_{q \cdot \omega} t=\left(-(q-) \omega \sum_{n=0}^{\infty} q^{n} f \quad q\left(x+\omega n_{q}[\right.\right. \tag{3}
\end{gather*}
$$

Provided that the series converges at $x=a, x=b$. In that case, f is called $q \cdot \omega$ integrable on $[a, b]$.

We say that f is $q . \omega$ integrable over I if it is $q . \omega$ integrable on $[a, b]$ for all $a, b \in \mathrm{I}$.

Lemma 1. Assume that $f: \mathrm{I} \rightarrow \square$ is continuous at ω_{0} and,for each $x \in \mathrm{I}$, define $F(x):=\int_{\omega_{0}}^{x} f(t) d_{q . \omega}$, then F is continuous at ω_{0} and $D_{q . \omega} F$ exists for every $x \in \mathrm{I}$ with $D_{q \cdot \omega} F(x)=f(x)$. Conversely $\int_{a}^{b}\left(D_{q \cdot \omega} f\right)(x) d_{q \cdot \omega} x=F(b)-F(a), \forall a, b \in \mathrm{I}$.

Lemma 2. Assume that $f: \mathrm{I} \rightarrow \square$ is continuous at ω_{0} and,for each $x \in \mathrm{I}, f$ is $q . \omega$ integrable, then

$$
\int_{\omega_{0}}^{t} \int_{\omega_{0}}^{s} f(\tau) d_{q \cdot \omega} \tau d_{q \cdot \omega}=\int_{\omega_{0}}^{t}\left(\begin{array}{ll}
t & \tau) f(\tau))_{q \cdot \omega} . \tag{4}\\
\end{array}\right.
$$

Proof. By Definition 1, we have

$$
\begin{aligned}
& \int_{\omega_{0}}^{t} \int_{\omega_{0}}^{s} f(\tau) d_{q . \omega} \tau=(t(1-q)-\omega) \sum_{k=0}^{\infty} q^{k} \int_{\omega_{0}}^{q^{k} t+\omega[k]_{q}} f(\tau) d_{q . \omega} \tau \\
& =(t(1-q)-\omega) \sum_{k=0}^{\infty} q^{k}\left(\left(q^{k} t+\omega[k]_{q}\right)(1-q)-\omega\right) \sum_{m=0}^{\infty} q^{m} f\left(\left(q^{k} t+\omega[k]_{q}\right) q^{m}+\omega[m]_{q}\right) \\
& =(t(1-q)-\omega) \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} q^{m} q^{k}\left(\left(q^{k} t+\omega[k]_{q}\right)(1-q)-\omega\right) f\left(q^{k+m} t+\omega[k+m]_{q}\right) \\
& =(t(1-q)-\omega) \sum_{k=0}^{\infty} \sum_{m=k}^{\infty} q^{m}\left(\left(q^{k} t+\omega[k]_{q}\right)(1-q)-\omega\right) f\left(q^{m} t+\omega[m]_{q}\right) \\
& =(t(1-q)-\omega) \sum_{m=0}^{\infty} \sum_{k=0}^{m} q^{m}\left(\left(q^{k} t+\omega[k]_{q}\right)(1-q)-\omega\right) f\left(q^{m} t+\omega[m]_{q}\right) \\
& \quad=(t(1-q)-\omega) \sum_{m=0}^{\infty} q^{m} f\left(q^{m} t+\omega[m]_{q}\right) \sum_{k=0}^{m}\left(\left(q^{k} t+\omega[\mathrm{k}]_{q}\right)(1-q)-\omega\right) \\
& \quad=(t(1-q)-\omega)^{2} \sum_{m=0}^{\infty} q^{m} f\left(q^{m} t+\omega[m]_{q}\right)[m]_{q} \\
& \\
& \quad=(t(1-q)-\omega) \sum_{m=0}^{\infty} q^{m}\left(t-\left(t q^{m}+\omega[m]_{q}\right)\right) f\left(q^{m} t+\omega[m]_{q}\right)
\end{aligned}
$$

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 09 || September 2017 || PP. 68-73

$$
=\int_{\omega_{0}}^{t}(t-\tau) f(\tau) d_{q \cdot \omega} \tau .
$$

Therefore, (4) holds.
Lemma 3. Assume that $f: \mathrm{I} \times \square \rightarrow \square$ be given. The unique solution of the problem(1) (2) is the function

$$
x(t)=\int_{\omega_{0}}^{b} G(t, s) f(s, x(s)) d_{q \cdot \omega} s .
$$

where

$$
G(t, s)=\frac{1}{b-\omega_{0}}\left\{\begin{array}{l}
(b-s)(t-\omega)-(t-s)(b-\omega), \omega_{0} \leq s \leq t \leq b \\
(b-s)(t-\omega), \omega_{0} \leq t \leq s \leq b
\end{array}\right.
$$

Lemma 4. Let $G(t, s)$ be Green's function given in the statement of Lemma 3, then $G(t, s)$ satisfies the following conditions:

$$
\text { (i) } G(t, s) \geq 0, G(t, s) \leq G(s, s),(t, s) \in\left[\omega_{0}, b\right]^{2}
$$

(ii) There existe $\gamma \in(0,1)$ such that $\min _{t \in\left[\omega_{0}+\frac{b-\omega_{0}}{4}, \omega_{0}+\frac{3\left(b-\omega_{0}\right)}{4}\right]} G(t, s) \geq \gamma G(s, s)$.

Proof. Let $t \in\left[\omega_{0}+\frac{b-\omega_{0}}{4}, \omega_{0}+\frac{3\left(b-\omega_{0}\right)}{4}\right]$, if $t<S$ then

$$
\frac{G(t, s)}{G(s, s)}=\frac{t-\omega}{s-\omega} \geq \frac{\omega_{0}+\frac{b-\omega_{0}}{4}-\omega}{b-\omega}
$$

If $s \leq t$, then

$$
\begin{aligned}
\frac{G(t, s)}{G(s, s)} & =\frac{(b-s)(t-\omega)-(t-s)(b-\omega)}{(b-s)(s-\omega)}=\frac{t-\omega}{s-\omega}-\frac{(t-s)(\mathrm{b}-\omega)}{(b-s)(s-\omega)} \\
& =\frac{t-\omega}{\mathrm{s}-\omega}\left(1-\frac{(t-s)(\mathrm{b}-\omega)}{(b-s)(\mathrm{t}-\omega)}\right) .
\end{aligned}
$$

Since $\frac{(t-s)(b-\omega)}{(b-s)(t-\omega)} \leq \frac{\left(\omega_{0}+\frac{3}{4}\left(b-\omega_{0}\right)-s\right)(b-\omega)}{(b-s)\left(\omega_{0}+\frac{3}{4}\left(b-\omega_{0}\right)-\omega\right)} \leq \frac{3}{4} \frac{b-\omega}{\omega_{0}+\frac{3}{4}\left(b-\omega_{0}\right)-\omega}$,
we see that

$$
\frac{G(t, s)}{G(s, s)}=1-\frac{3}{4} \frac{b-\omega}{\omega_{0}+\frac{3\left(b-\omega_{0}\right)}{4}-\omega} .
$$

Choose

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 09 || September 2017 || PP. 68-73

$$
\gamma=\min \left\{\frac{\omega_{0}+\frac{b-\omega_{0}}{4}-\omega}{b-\omega}, 1-\frac{3}{4} \frac{b-\omega}{\omega_{0}+\frac{3\left(b-\omega_{0}\right)}{4}-\omega}\right\} .
$$

Thus Lemma 4 holds.
Lemma 5. Let B be a Banach space and $P \subseteq \mathrm{~B}$ be a cone in. Assume Ω_{1} and Ω_{2} are open subsets of B with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subseteq \Omega_{2}$, and let $T: P \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \square$ is completely continuous operator such that , ether
(i) $\|T y\| \leq\|y\|, y \in P \bigcap \partial \Omega_{1},\|T y\| \geq\|y\|, y \in P \bigcap \partial \Omega_{2}$ or
(ii) $\|T y\| \geq\|y\|, y \in P \bigcap \partial \Omega_{1},\|T y\| \leq\|y\|, y \in P \bigcap \partial \Omega_{2}$

Then T has a fixed point in $T: P \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3. The main results

In this section, we give the existence of positive solutions of problem (1) (2). We notice that x solves (1) (2) if and only if x is a fixed point of the operator

$$
\begin{equation*}
T x(t)=\int_{\omega_{0}}^{b} G(t, s) f(s, x(s)) d_{q . \omega} s . \tag{5}
\end{equation*}
$$

Where G is Green's function derived in Lemma 3 and $T: \mathrm{B} \rightarrow \mathrm{B}$, where B is the Banach space consisting of all maps $\left[\omega_{0}, b\right] \rightarrow \square$ when equipped with the usual supremum norm $\|\mid\|$.

Let us also make the following declarations, which will be use in the sequel.

$$
\eta=\frac{1}{\int_{\omega_{0}}^{b} G(s, s) \mathrm{d}_{q . \omega} s}, \quad \lambda=\frac{1}{\int_{\omega_{0}+\frac{b-\omega_{0}}{4}}^{\omega_{0}+\frac{3\left(b-\omega_{0}\right)}{4}} \gamma G\left(\omega_{0}+\frac{b-\omega_{0}}{2}, s\right) \mathrm{d}_{q, \omega} s} .
$$

Let us also introduce two conditions on the behaviour of f that will be useful in the sequel. These are standard assumptions on the growth of the non-linearity f.
$\left(C_{1}\right)$ There exists a number $r>0$ such that $f(t, x) \leq \eta r$, whenever $0 \leq x \leq r$.
$\left(C_{2}\right)$ There exists a number $r>0$ such that $f(t, x) \geq \lambda r$, whenever $\gamma r \leq x \leq r$.
Where γ is the constant deduced in Lemma 4.
We now can prove the following existence result.
Theorem 1. Suppose that there are distinct $r_{1}, r_{2}>0$ such that condition $\left(C_{1}\right)$ holds at $r=r_{1}$ and condition $\left(C_{2}\right)$ holds at $r=r_{2}$. Suppose also that $f(t, x) \geq 0$ and continuous. Then the boundary value problem (1) (2)
has at least one positive solution, say x_{0}, such that $\left\|x_{0}\right\|$ lies between r_{1} and r_{2}.

Proof. We shall assume without loss of generality that $0<r_{1}<r_{2}$, consider the set

$$
\mathrm{K}=\{x \in \mathrm{~B}: x(t) \geq 0, \min x(t) \geq \gamma\|x\|\}
$$

which is a cone with $\mathrm{K} \subseteq \mathrm{B}$. Observe that $T: \mathrm{K} \rightarrow \mathrm{K}$, for we observe that

$$
\min _{t \in\left[\omega_{0}+\frac{b-\omega_{0}}{4}, \omega_{0}+\frac{3\left(b-\omega_{0}\right)}{4}\right]}(T x)(t) \geq \gamma \int_{\omega_{0}}^{b} G(s, s) \mathrm{f}(\mathrm{~s}, \mathrm{x}(\mathrm{~s})) \mathrm{d}_{q \cdot \omega} s=\gamma\|T x\|,
$$

whence $T x \in \mathrm{~K}$, as claimed. Also, it is easy to see that T is a completely continuous operator. Now, put $\Omega_{1}=\left\{x \in \mathrm{~K},\|x\|<r_{1}\right\}$. Note that for $x \in \partial \Omega_{1}$, we have that $\|x\|=r_{1}$ so that condition $\left(C_{1}\right)$ holds for all $x \in \partial \Omega_{1}$. Then for $x \in \mathrm{~K} \cap \partial \Omega_{1}$, we find

$$
\begin{aligned}
\|T x\| & =\max _{t \in\left[\omega_{0}, b\right]} \int_{\omega_{0}}^{b} G(t, s) f(s, x(s)) d_{q \cdot \omega} s \\
& \leq \int_{\omega_{0}}^{b} G(s, s) f(s, x(s)) d_{q \cdot \omega} s \\
& \leq \eta r_{1} \int_{\omega_{0}}^{b} G(s, s) f(s, x(s)) d_{q \cdot \omega} s=r_{1}=\|x\|
\end{aligned}
$$

whence we find that $\|T x\| \leq\|x\|$. Thus T is a cone compression on $\mathrm{K} \cap \partial \Omega_{1}$.
Next, put $\Omega_{2}=\left\{x \in K,\|x\|<r_{2}\right\}$. Note that for $x \in \partial \Omega_{2}$, we have that $\|x\|=r_{2}$ so that condition $\left(C_{2}\right)$ holds for all $x \in \partial \Omega_{2}$. Then for $x \in \mathrm{~K} \cap \partial \Omega_{2}$, we find

$$
\begin{aligned}
T x\left(\omega_{0}+\frac{b-\omega_{0}}{2}\right) & =\int_{\omega_{0}}^{b} G\left(\omega_{0}+\frac{b-\omega_{0}}{2}, s\right) f(s, x(s)) d_{q . \omega} s \\
& \geq \int_{\omega_{0}+\frac{b-\omega_{0}}{4}}^{\omega_{0}+\frac{3 b-\omega_{0}}{4}} \gamma G(s, s) f\left(s, x(s)_{q . b} d\right. \\
& \geq \lambda r_{2} \int_{\omega_{0}+\frac{b-\omega_{0}}{4}}^{\omega_{0}+\frac{3\left(b-\omega_{0}\right)}{4}} \gamma G\left(\omega_{0}+\frac{b-\omega_{0}}{2}, s\right) d_{q . \omega} s=r_{2}
\end{aligned}
$$

whence we find that $\|T x\| \geq\|x\|$. Thus T is a cone expansion on $\mathrm{K} \cap \partial \Omega_{2}$. So, it follows by Lemma 5 that the operator has fixed T point. It means that (1) (2) has a positive solution with $r_{1} \leq x_{0} \leq r_{2}$.

Theorem 2. Assume that there exists a constant $M>0$ such that

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 09 || September 2017 || PP. 68-73

$$
\max _{(t, x) \in\left[\omega_{0}, b\right] \times[-M, M]}|f(t, x)| \leq \frac{M}{\int_{\omega_{0}}^{b} G(s, s) d_{q . \omega} s}
$$

Then (1) (2) has a solution, say $x_{0}(t)$ such that $\left|x_{0}(t)\right| \leq M$, for each $t \in\left[\omega_{0}, b\right]$.
Proof. Let T be the operator defined by (5). Denote
$\mathrm{B}_{M}=\left\{x:\left[\omega_{0}, b\right] \rightarrow \square,\|x\| \leq M\right\}$, observe that
$\|T x\| \leq \max _{t \in\left[\omega_{0}, b\right]} \int_{\omega_{0}}^{b}|G(t, s) \| f(s, x(s))| d_{q . \omega} s \leq \frac{M}{\int_{\omega_{0}}^{b} \mathrm{G}(\mathrm{s}, s) d_{q . \omega} s} \int_{\omega_{0}}^{b} \max _{t \in\left[\omega_{0}, b\right]}|G(t, s)| d_{q . \omega} s=M$.
We see that $T: \mathrm{B}_{M} \rightarrow \mathrm{~B}_{M}$. Consequently, we conclude by the Brouwer theorem that T has a fixed point $x_{0} \in \mathrm{~B}_{M}$ with $\left|x_{0}\right| \leq M$.

References:

[1]. W. Hahn, Über orthogonalpolynome, die q-Differenzengleichungen genugen, Math.Nachr. 2(1949)4-34.
[2]. R.Alvarez-Nodarse, On characterizations of classical polynomials, J. Comput.Appl.Math.196(1)(2006) 320-337.
[3]. A.Dobrogowska, AOdzijewica, Second oder q-differen equations solvable by factorization method.J.Comput.Appl.Math.193(1)(2006)319-346.
[4]. J.Petroniho,Generic formulas for the values at the singular points of some special monic classical Horthogonal polynomial, J. Comput,Appl Math. 205(1)(2007)314-324.
[5]. K.A.Aldwoah, Generalized time scales and associated difference equations, Ph.D.Thesis,Cairo University,2009.
[6]. K.A.Aldwoah,A.E.Hamza,Difference time scales, Int. J. Math.Stat. 9(A11)(2011)106-125.
[7]. G.Bangerezako, Variational q-calculus. J.Math.Anal. Appl. 289(2)(2004)650-665.
[8]. Artur M.C. Brito da Cruz, Natalia Martins, Delfim F. M. Torres, Higher-order Hahn's quantum variational calculus. Nonlinear Analysis. 75(2012)1147-1157.

