Semi-Strong Setsin a Graph

V.Praba¹, P. Aristotle² and V. Swaminathan³

¹Research scholar, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram – 631 561, Tamilnadu, India
¹Associate Professor, Department of Mathematics, Rajalakshmi Engineering College, Chennai – 602 105, Tamilnadu, India.
²PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai – 630 561, Tamilnadu, India.
³Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai – 625 022, Tamilnadu, India.

Abstract: Let G = (V, E) be a simple, finite undirected graph. A subset *S* of V(G) is called a semi-strong stable set if $|N(v) \cap S| \leq 1$ for every v in V(G)[5]. The hereditary property of a semi-strong stable set is used to define two parameters. A subset *S* of V(G) is called a maximal semi-strong set of *G* if *S* is semi-strong and no proper super set of *S* is semi-strong. The maximum cardinality of a maximal semi-strong set of *G* is called semi-strong number of *G* and is denoted by ss(G). The minimum cardinality of a maximal semi-strong set of *G* is called a semi-strong set of *G* and is denoted by ss(G). In this paper we study the bounds of the above two parameters of standard graphsand the related characterization.

Keywords:strong stable set, semi strong set, semi strong number

AMS Subject Classification: 05C69

Introduction

Claude Berge[1] introduced the concept of strong stable set in a graph. Let G = (V, E) be a simple, finite undirected graph. A subset S of V(G) is called a strong stable set of G if $|N[v] \cap S| \leq 1$ for every v in V(G). It can be easily seen that such a set is independent and the distance between any two vertices of S is greater than or equal to three. That is, a strong stable set is a 2-packing. Generalizing this concept, E.Sampathkumar and L.Pushpa Latha [5] introduced semi-strong sets. A subset S of V(G) is called semi-strong stable if $|N(v) \cap S| \leq 1$ for every v in V(G). A strong stable set is semi-strong stable but the converse is not true. For example, in a cycle of order 5, C_5 , any two consecutive vertices is a semi-strong stable set. If S is a semistrong stable set, then any component of S is either K₁ or K₂ and the distance between any two points of S is not equal to two. E.Sampathkumar and L.Pushpa Latha discussed partition V(G) into semi-strong stable sets. Such a partition is called semi-strong stable coloring. Semi-strong chromatic number of a graph has been defined and several results were derived. In this paper, the property of being aSemi-strong stable set is observed to be hereditary and this property of semi-strong stable set is used to define two parameters namely maximum cardinality a maximal semi-strong stable set (ss(G)) and minimum cardinality a maximalsemi-strong stable set(lss(G)).

Observation:The property of being a semi-strong set is hereditary.

Definition 1: A subset S of V(G) is called a maximal semi-strong set of G if S is semi-strong and no proper super set of S is semi-strong. The maximum cardinality of a maximal semi-strong set of G is called the semi-strong number of G and is denoted by ss(G). The minimum cardinality of a maximal semi-strong set of G is called the lower semi-strong number of G and is denoted by lss(G).

Example: Let $G = C_9$. Let $V(G) = \{u_1, u_2, ..., u_9\}$. $S = \{u_1, u_2, u_5, u_6\}$ is a maximum semi-strong set of G. Therefore ss(G) = 4. $\{u_1, u_4, u_7\}$ is a maximal semi-strong set of G which is not maximum.

ss(G) and lss(G) for someWell-known Graphs:

 $1.ss(K_n) = \begin{cases} 2 & if \ n = 2 \\ 1 & if \ n \ge 3 \end{cases}$ 2. ss(K_{m,n}) = 2 where m,n ≥ 1 3. ss(K_{1,n}) = 2 where n ≥ 1 International Journal of Latest Engineering and Management Research (IJLEMR) ISSN: 2455-4847 www.ijlemr.com // Volume 02 - Issue 08 // August 2017 // PP. 22-24

Observation 1: $1 \leq lss(G) \leq ss(G) \leq n$.

Observation 2: If G has a full degree vertex and $|V(G)| \ge 3$, then $ss(G) \le 2$.

Proof: Let *u* be a full degree vertex of *G*. Let $|V(G)| \ge 3$. Let $V(G) = \{u, v_2, v_3, ..., v_n\}$. Let *S* be a maximum semi-strong set of *G*. For any *i*, *j*, and $i \ne j$, $(2 \le i \le n)$, v_i and v_j together cannot belongs to *S*. Suppose v_j is notadjacent with $v_i(i \ne j)$. In this case, ss(G) = 2. If for every *i*, there exist some *j*, such that v_j is adjacent with v_i , then v_i , *u* together cannot belong to *S*. Therefore, in this case ss(G) = 1. Therefore $ss(G) \le 2$.

Corollary 1: If G has a full degree vertex and $|V(G)| \ge 3$, then ss(G) = 2 if and only if G is a star.

Corollary 2: If G has afulldegree vertex u and $|V(G)| \ge 3$, then ss(G) = 1 if and only if $\langle V(G) - \{u\} >$ has no isolates.

Theorem 1: Let $|V(G)| \ge 3$. Then ss(G) = 1 if and only if any two vertices of G have a common vertex in G. **Proof:** By hypothesis, no two vertices of G form a semi-strong set. Therefore ss(G) = 1. The converse isobvious.

Definition 2: N(G), called the neighbourhood graph G has the same vertex set as G and two vertices in N(G) are adjacent if and only if they have a common neighbour.

Theorem 2:Let G be a graph with atleast three vertices. Then ss(G) = 1 if and only if either G has a full degree vertex say u such that $\langle V(G) - \{u\} \rangle$ has no isolates or G is a multipartite graphwith atleast three partite sets such that $N(G) = K_n$.

Proof: Let ss(G) = 1. Suppose G has a full degree vertex say u.Since $|V(G)| \ge 3$, by Corollary2, $\langle V(G) - \{u\} >$ has no isolates. Suppose G has no full degree vertex. Clearly diam(G) = 2 and everyedge is on a triangle.Let $u_1 \in V(G)$. Let it be $V_1 = \{v_1, v_2, ..., v_{k_1}\}$. If $V_1 = V(G)$, then $G = K_{k_1}$ and hences $s(G) = k_1 \ge 2$, (since u_1 is not a full degree vertex), a contradiction. Therefore $V_1 \subset V(G)$.Let V_2 be a maximal independent set containing v_1 . Let $V_2 = \{v_1, v_2, ..., v_{k_2}\}$. If $V_1 \cup V_2 = V(G)$, then G is bipartite andhence $ss(G) \ge 2$, a contradiction. Therefore there exist $w_1 \in V(G) - (V_1 \cup V_2)$.Let V_3 be a maximal independent set containing w_1 . Let $V_3 = \{w_1, w_2, ..., w_{k_3}\}$. Suppose $V(G) = V_1 \cup V_2 \cup V_3$. Since ss(G) = 1, $N(G) = K_n$.

If $V(G) \supset V_1 \cup V_2 \cup V_3$, proceeding as before we arrive at a multipartite graph withatleast threevertices such that $N(G) = K_n$. The converse is obvious.

Theorem 3:ss(G) = n if and only if every component of G is either K₁ or K₂.

Proof: Let ss(G) = n. Then $V = \{u_1, u_2, ..., u_n\}$ is a ss-set of G. Therefore G is P₃-free and K₃-free. The distance between any two vertices cannot be greater than or equal to two. Therefore either u_i and u_j are adjacentor u_i and u_j independent. If u_i and u_j are adjacent, then there exist no vertex u_k which is adjacent with either u_i or u_j or both. Therefore $\langle u_i, u_j \rangle$ is a component of G. If u_i and u_j are independent, then there exists a vertex u_k adjacent with u_i and u_j . If u_k is adjacent with u_i , then $\langle u_i, u_k \rangle$ is a component of G. If u_k is adjacent with u_j , then $\langle u_j, u_k \rangle$ is a component of G. If u_k is adjacent with u_j , then $\langle u_j, u_k \rangle$ is a component of G. Since ss(G) = n any u_i can be isolate of G or u_i forms a K₂-component with some vertex of G. The converse is obvious.

Remark 1: If G is connected, then ss(G) = n if and only if n = 1 or 2.

Theorem 4: Let G be any graph. Then ss(G) = 2 if and only if there exist two vertices u_1, u_2 (independent or adjacent) such that any $u_i, (3 \le i \le n)$, is adjacent with exactly one of u_1, u_2 and in case u_1, u_2 are independent, either $\langle u_3, u_4, ..., u_n \rangle >$ has no isolates provided atleast two vertices from $u_3, u_4, ..., u_n$ are adjacent with u_1 , so also with u_2 , or u_3 is adjacent with every $u_i, (4 \le i \le n)$ where u_3 is the only vertex from $u_3, u_4, ..., u_n$ which is adjacent with u_1 and $u_4, u_5, ..., u_n$ are adjacent with u_2 .

Proof:Let S= { u_1, u_2 } be a *ss*-set of G. Then for any $u_i, (3 \le i \le n)$, u_i is adjacent with exactly one of u_1, u_2 . Let u_3, u_4, \dots, u_r be adjacent with u_1 and $u_{r+1}, u_{r+2}, \dots, u_n$ be adjacent with u_2 .

Subcase 1:
$$r \ge 2$$
 and $n - r \ge 2$

Then any two vertices adjacent with u_1 do not form a semi-strong set. So also any vertex adjacent with u_2 . Also any semi-strong set of G from $\{u_3, u_4, ..., u_n\}$ cannot contain more than two vertices, provided $< u_3, u_4, ..., u_n >$ has no isolates, in this case u_1 and u_2 are independent.

Subcase 2:
$$r = 1$$
 or $r = n - 3$.

Suppose ss(G) = 2. Let S= { u_1, u_2 } be a ss-set of G. Then for any $u_i, (3 \le i \le n)$, u_i is adjacent with exactly one of u_1, u_2 . Let $u_3, u_4, ..., u_r$ be adjacent with u_1 and $u_{r+1}, u_{r+2}, ..., u_n$ be adjacent with u_2 . Subcase 1: $r \ge 2$ and $n - r \ge 2$.

Since $\{u_1, u_2\}$ is a ss-set of G, and since u_1, u_2 are adjacent for any subgraphinduced by $u_3, u_4, ..., u_n$, $\{u_1, u_2\}$ is a ss-set of G and ss(G) = 2.

Subcase 2:r = 1 or r = n - 3.

In this case also, ss(G) = 2 for any subgraph induced by $u_3, u_4, ..., u_n$. The converse is obvious.

Theorem 5: Let G be a graph. Then ss(G) = n - 1 if and only if there exists exactly one P₃ component and other components are ither K₁ or K₂.

Proof: Let ss(G) = n - 1. Let $V(G) = \{u_1, u_2, ..., u_n\}$. Let S be a ss-set of G. Let $S = \{u_1, u_2, ..., u_{n-1}\}$. Any component of S is either K_1 or $K_2 \cdot |N(u_n) \cap S| \le 1$. If u_n is not adjacent with any vertex of S, then $S \cup \{u_n\}$ is a ss-set of G, a contradiction. If u_n is adjacent with exactly one K_1 component of S, then again $S \cup \{u_n\}$ is a ss-set of G, a contradiction. If u_n is adjacent with exactly one K_2 component of S. That is, $S \cup \{u_n\}$ contains exactly one P_3 . That is, every component of G is either K_1 or K_2 or P_3 , the P_3 component beingunique. The converse is obvious.

References:

- [1]. C. Berge, Graphs and Hyper graphs, North Holland, Amsterdam, 1973.
- [2]. F.Harary, Graph Theory, Addison Wesley, 1969.
- [3]. T.W.Haynes, S.T.Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [4]. G. Jothilakshmi, A. P. Pushpalatha, S. Suganthi and V. Swaminathan, (k,r) Semi Strong Chromatic Number of a Graph, International Journal of Computer Applications, Vol. 21, No. 2, 2011, Pages 7-10.
- [5]. E. Sampathkumar and L. Pushpa Latha, Semi-Strong Chromatic Number of a Graph, Indian Journal of Pure and Applied Mathematics, 26 (1): 35-40, 1995.