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Abstract: Let G = (V, E) be a simple connected graph. A partition ᴨ  = {V1, V2,  V3….,Vk }  is called a 

 resolving partition of  G  if for any  u ϵ  V(G) , the code of u with respect to ᴨ (denoted by cᴨ ( u ) ) namely  
(d(u,V1 ),d(u, V2),….,d(u, Vk  )) is distinct for different u ϵ V(G) where d(u, Vi)= min{d(u, x) / x ϵ Vi }. The 

minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted 

by pd (G) Several types of resolving partition have been considered like connected resolving partition , metric 

chromatic number of a graph (that is, independent resolving partition) , equivalence resolving partition  etc. In 

this paper, a new type of resolving partition is considered and in this partition, each element of the partition 

contains an isolate vertex in the subgraph induced by that element. This is a generalization of an independent 

resolving partition. This resolving partition is called an isolate vertex resolving partition in a graph. The 

minimum cardinality of an isolate vertex resolving partition is denoted by pd is (G). This parameter for some well 

known graphs is found. Graphs for which pd is (G) = 2 or pd is (G) = n are characterized. 
Keywords: Central vertex, Isolate vertex partition dimension, Isolate Vertex resolving partition, Partition 

Dimension, Resolving partition. 

 

1. Introduction 
In this paper, G is a simple, finite, connected and undirected graph. 

Definition 1.1. [1] Let G = (V, E) be a simple, finite, connected and undirected graph. A partition ᴨ ={V1,V2, 

V3….,Vk }  of V (G) is called a resolving partition of G if the code cᴨ (u) = (d(u,V1 ),d(u,V2),….,d(u,Vk )) is 

distinct for different u ϵ V(G) where d(u, Vi)= min{d(u,x) / x ϵ Vi }. The minimum cardinality of a resolving 

partition of a graph G is called the partition dimension of G and is denoted by pd (G). 
 
Definition 1.2. Let G = (V,E) be a simple connected graph. Let ᴨ = {V1, V2, V3,…..,Vk } be a partition of V(G). If 

each < Vi > contains an isolate and if ᴨ is a resolving partition, then ᴨ is called an isolate vertex resolving 

partition. The trivial partition namely ᴨ = {{u1}, {u2},…., {un}} where V(G) = {u1, u2 ,….., un} is an isolate vertex 

resolving partition. 
The minimum cardinality of an isolate vertex resolving partition is called the isolate vertex partition dimension 

of G and is denoted by pd is (G). 
 
Remark 1.3. Every independent resolving partition is an isolate vertex resolving partition. Therefore  
pd is(G)  ≤  ipd(G)  ≤  pd(G). 

 

2. pd is (G) FOR WELL KNOWN GRAPHS 

1. pd is ( Kn ) = n 

2. pd is ( K1, n ) = n + 1 

3. pd is ( Km, n ) = m + n 

4. pd is (K a1,a2,….a n)  = a1+ a2 + ………+ an 
5. pd is ( Km (a1, a2 , …., am ) ) = max { a1,  a2,……., am} 

 
 

Theorem 2.1.  pd is ( Wn ) ≥ 5 if  n  ≥ 14.  

Proof:  Suppose n ≥ 14. 
Let ᴨ = {{u}, V1, V2, V3} be an isolate vertex partition, where u is the central vertex. Every vertex Vi (1 ≤   i  ≤ 3 ) 

has code 1 with respect to {u} and 0 with respect to Vi. Since there are only two more partitions and since the 

codes with respect to these two partitions can be either (1,1) or (1,2) or (2,1) or (2,2), | V2 | ≤  4 for all i. That is  
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|V1 ∪V2 ∪ V3| ≤ 12. Since there are 13 vertices in V1 ∪ V2 ∪ V3, we get a contradiction. Therefore pd is ( Wn ) ≥ 5 if  
n  ≥ 14. 
 

Remark 2.2. 

1. pd is ( Wn ) ≥ 6 if n  ≥ 34. 

2. pd is ( Wn ) ≥ 7 if n  ≥ 82. 

3. pd is ( Wn ) ≥ k + 1 if n  ≥  ( 2
k - 2

 + 1) + ( k – 2 ) 2 
k - 2

  + 1. 

 

Theorem 2.3. Let G be a connected graph of order n. Then pd is (G) = 2 if and only if  G = K2. 

Proof: Let ᴨ = {V1, V2} be a minimum isolate vertex resolving partition. 
When n = 2, V1 and V2 are singletons and G = K2. When n = 3, ᴨ is not an isolate vertex resolving partition. 
Suppose n = 4.  Then G = K4, C4, K1,3 , K4  − e, P4 , K1, 3 + e   and pdis(G) = 4. Let n ≥ 5. Let Π = {V1,V2} be a 

minimum isolate vertex resolving partition. V1 contains an isolate vertex say z.  Then d(z,V2) = 1.  Suppose V1 

contains three vertices say z, x and y.  c Π (z) = (0, 1). Therefore cΠ(x) = (0, t), where t ≠ 1 and cΠ(y) = (0, t’), 

where t’ ≠ 1, t’ ≠ t. Therefore one of t, t’
 
≥ 3. Let t’

 
≥ 3.Then there exists a shortest path 

y, y1, y2, . . . , yt’  = v ε V2. Therefore y, y1, y2, . . . ,yt ‘-  1 ϵ V1.  Also d (yt ‘- 1 ,V2) = 1, a contradiction.  
(Since d(z,V2) = 1). Suppose V1 contains two vertices z, x. d( z, V2) =  1. Let d(x,V2) = t. Then t ≥ 2. There exists 

a shortest path x, x1, x2,….,xt = v ε V2. Since t ≥ 2, xt−1 ϵ V1 and d(xt−1,V2) = 1, a contradiction. If V1 = {z} and if < 

V2 > has an isolate say u, then u and z are adjacent and any path from any other vertex  
of < V2 > to z must contain u. Hence u is not an isolate of < V2 >, a contradiction. Therefore pd is (G) ≥ 3. The 

converse is obvious.  
 
Theorem 2.4.  pd is(G) = n if and only if  V(G) can be partitioned into subsets V1 and V2 such that G = < V1 > + 

< V2 >  . If any of   < V1 > and < V2 > is connected, then its diameter less than or equal to 2 and if one of them 

is disconnected, then it is totally disconnected. 
Proof: Suppose V(G) can be partitioned into subsets V1 and V2 such that G = < V1 > + < V2  >. 
Case(i): Let one of < V1 > , < V2 > be independent and other is connected with diameter less than or equal 2. Let 

diam(< V2>) = 2. Let x, y ϵ V1. Let ᴨ = {{x,y},{xi}} where xi runs over all the vertices of V1- {x, y} and V2. 

d(x,xi) = 2 = d(y,xi) for all xi ϵ V1- {x, y} d(x,xi) = 1 = d(y,xi) for all xi ϵ V2. Therefore ᴨ is not a resolving 

partition. Suppose x, y ϵ V2. Then d(x,xi) = 1 = d(y,xi) for all xi ϵ V1. Let z ϵ V2- {x, y}. If z is adjacent with y, 

then there exists a path x,z,…..,u,y of length greater than or equal to 3, a contradiction. (Since diam(< V 2 >) = 

2). Therefore z is adjacent with both x and y. (If z is not adjacent with both x and y, then diam(< V2 >) = 2). 

Therefore d(x,z) = d(y,z). Therefore ᴨ is not a resolving partition. Therefore pd is (G) = n. Let diam(< V2 >) = 1. 

Then < V2 > is complete. Therefore no two points of V2 can be independent. Therefore pd is (G) = n. 
Case(ii): Let both < V1 > and < V2 > be independent. Then pd is (G) = n. 
Case(iii): Suppose < V1 > is independent and < V2 > is disconnected but not totally disconnected. 
Let V1 = {u1,u2 ,…….,uk}. Let V2 = {{uk+1,uk+2 ,…….,un}. Let H1 and H2 be the components of  
< V2 >. Since < V2 > is not totally disconnected, at least one of H1, H2 contains at least two vertices. Let H1 

contain at least two vertices. Since H1 is connected, there exists two adjacent vertices in H1 say x, z. Let y ϵ 

V(H2). Let ᴨ = {{x,y},{xi}} where xi  runs over all the vertices of V1,  
H1 - {x}, H2 - {y}. Since z ϵ V (H1), {z} ϵ ᴨ. d(x,z) = 1, d(y,z) = 2. Therefore ᴨ is an isolate vertex resolving 

partition of G, a contradiction, since | ᴨ | = n – 1. 
Case(iv): Suppose < V1 > and < V2 > are connected and diam(< Vi >) ≤ 2, 1 ≤ i ≤ 2. If diam(< Vi >) = 1 for i = 1, 

2 then G is complete and hence pd is(G) = n. If diam(< V1 >) = 2 or diam(< V2 >) = 2 then proceeding as in 

Case(i), we get that pd is(G) = n. 
Case(v): Suppose < V1 > is connected and < V2 > is disconnected but not totally disconnected. Then proceeding 

as in Case (iii), we get a contradiction. 

Conversely, suppose pd is (G) = n. 
Suppose V (G) cannot be partitioned into subsets V1 and V2 such that G = < V1 > + < V2 >. 
Suppose G is complete. Then G can be partitioned into subsets V1 and V2 such that G = < V1 > + < V2 >. 
Suppose G is not complete. Let {u1, u2 ,….., uk} be a maximum independent set of G. Then k  ≥  2.  
Let V1 = < {u1, u2 ,….., uk} > and V2 =  < V – V1 >. Since G ≠  < V1 > + < V2 >, there exists ui ϵ V1 and y ϵ V2 

such that ui and y are not adjacent. Since ui is not an isolate of G and since ui is an isolate of < V1 >,  ui is 

adjacent with some vertex say z ϵ V2. Then ᴨ = {{y,z}, {xi}} where xi ϵ V1 or xi ϵ V2 - {y, z}, is an isolate vertex 

resolving partition. Since y, z are resolved by ui. Therefore pd is (G) ≤ n – 1, a contradiction. Therefore G can be 

partitioned into subsets V1 and V2 such that G = < V1 > + < V2 >. 
Suppose < V1 > and < V2 > are connected. Suppose diam(< V1>) ≥ 3. (similar proof if diam(< V2 >) ≥ 3). Then 

there exists a path u = uo, u1,…,uk = v in < V1 > where k = diam(< V1 >) ≥ 3. Let ᴨ = {{uo,uk}, {xi}}where xi ϵ V1 
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– {uo,uk}, xi ϵ V2. uo, uk are resolved by ui. Therefore pd is (G) ≤ n – 1, a contradiction. Therefore diam(< V1>) ≤ 

2. 
Suppose V1 is independent and < V2 > is connected. Suppose diam(< V2 >) ≥ 3. Then proceeding as above pd is 

(G) ≤  n – 1, a contradiction. Therefore diam(< V2 >) ≤ 2. Therefore G = < V1 > + < V2 > and if any of   < V1 > 

and < V2 > is connected, then its diameter less than or equal to 2 and if one of them is disconnected, then it is 

totally disconnected. 
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