Isolate Vertex Resolving Partition in a Graph

S. Hemalathaa¹, A. Subramanian², P. Aristotle³, V.Swamianthan⁴

¹(Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India) ²(Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India) ³(Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai – 630561, Tamilnadu, India)

⁴(Ramanujan Research Centre in Mathematics, Saraswathi Narayan College, Madurai-625022, Tamilnadu, India)

Abstract : Let G = (V, E) be a simple connected graph. A partition $\pi = \{V_1, V_2, V_3, ..., V_k\}$ is called a resolving partition of G if for any $u \in V(G)$, the code of u with respect to π (denoted by $c_{\pi}(u)$) namely $(d(u, V_1), d(u, V_2), ..., d(u, V_k))$ is distinct for different $u \in V(G)$ where $d(u, V_i) = \min\{d(u, x) / x \in V_i\}$. The minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted by pd (G) Several types of resolving partition have been considered like connected resolving partition , metric chromatic number of a graph (that is, independent resolving partition), equivalence resolving partition etc. In this paper, a new type of resolving partition is considered and in this partition, each element of the partition contains an isolate vertex in the subgraph induced by that element. This is a generalization of an independent resolving partition. This resolving partition is called an isolate vertex resolving partition in a graph. The minimum cardinality of an isolate vertex resolving partition is denoted by pd _w(G). This parameter for some well known graphs is found. Graphs for which pd _w(G) = 2 or pd _w(G) = n are characterized.

Keywords: Central vertex, Isolate vertex partition dimension, Isolate Vertex resolving partition, Partition Dimension, Resolving partition.

1. Introduction

In this paper, G is a simple, finite, connected and undirected graph.

Definition 1.1. [1] Let G = (V, E) be a simple, finite, connected and undirected graph. A partition $\pi = \{V_i, V_2, V_3, \dots, V_k\}$ of V (G) is called a resolving partition of G if the code $c_{\pi}(u) = (d(u, V_1), d(u, V_2), \dots, d(u, V_k))$ is distinct for different $u \in V(G)$ where $d(u, V_1) = \min\{d(u, x) \mid x \in V_1\}$. The minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted by pd (G).

Definition 1.2. Let G = (V,E) be a simple connected graph. Let $\pi = \{V_1, V_2, V_3, \dots, V_k\}$ be a partition of V(G). If each $\langle V_i \rangle$ contains an isolate and if π is a resolving partition, then π is called an isolate vertex resolving partition. The trivial partition namely $\pi = \{\{u_1\}, \{u_2\}, \dots, \{u_n\}\}$ where $V(G) = \{u_1, u_2, \dots, u_n\}$ is an isolate vertex resolving partition.

The minimum cardinality of an isolate vertex resolving partition is called the isolate vertex partition dimension of G and is denoted by $pd_{s}(G)$.

Remark 1.3. Every independent resolving partition is an isolate vertex resolving partition. Therefore $pd_{\downarrow}(G) \leq ipd(G) \leq pd(G)$.

2. pd is (G) FOR WELL KNOWN GRAPHS

- 1. $pd_{is}(K_n) = n$
- 2. $pd_{is}(K_{1,n}) = n + 1$
- 3. $pd_{is}(K_{m,n}) = m + n$
- 4. pd is (K $a_{1,a2,...,a_n}$) = $a_1 + a_2 + ... + a_n$
- 5. pd is $(K_m(a_1, a_2, ..., a_m)) = max \{a_1, a_2, ..., a_m\}$

Theorem 2.1. $pd_{is}(W_n) \ge 5$ if $n \ge 14$. **Proof:** Suppose $n \ge 14$.

Let $\pi = \{\{u\}, V_1, V_2, V_3\}$ be an isolate vertex partition, where u is the central vertex. Every vertex V_i $(1 \le i \le 3)$ has code 1 with respect to $\{u\}$ and 0 with respect to V_i . Since there are only two more partitions and since the codes with respect to these two partitions can be either (1,1) or (1,2) or (2,2), $|V_2| \le 4$ for all i. That is

International Journal of Latest Engineering and Management Research (IJLEMR) ISSN: 2455-4847

www.ijlemr.com // Volume 02 - Issue 08 // August 2017 // PP. 01-03

 $|V_1 \cup V_2 \cup V_3| \le 12$. Since there are 13 vertices in $V_1 \cup V_2 \cup V_3$, we get a contradiction. Therefore pd _{is}(W_n) ≥ 5 if $n \ge 14$.

Remark 2.2.

- 1. $pd_{is}(W_n) \ge 6 \text{ if } n \ge 34.$
- 2. $\operatorname{pd}_{is}(W_n) \ge 7 \text{ if } n \ge 82.$
- $3. \quad \text{pd}_{\text{ is }}(W_n) \geq k+1 \text{ if } n \, \geq \, (\, 2^{k-2}+1) + (\, k-2\,)\, 2^{\, k-2} \, +1.$

Theorem 2.3. Let G be a connected graph of order n. Then $pd_{is}(G) = 2$ if and only if $G = K_2$.

Proof: Let $\pi = \{V_1, V_2\}$ be a minimum isolate vertex resolving partition.

When n = 2, V_1 and V_2 are singletons and $G = K_2$. When n = 3, π is not an isolate vertex resolving partition.

Suppose n = 4. Then G = K_4 , C_4 , $K_{1,3}$, $K_4 - e$, P_4 , $K_{1,3} + e$ and pdis(G) = 4. Let n ≥ 5 . Let $\Pi = \{V_1, V_2\}$ be a minimum isolate vertex resolving partition. V_1 contains an isolate vertex say z. Then $d(z, V_2) = 1$. Suppose V_1 contains three vertices say z, x and y. c₁(z) = (0, 1). Therefore c₁(x) = (0, t), where t $\neq 1$ and c₁(y) = (0, t), where t $\neq 1$, t $\neq t$. Therefore one of t, t ≥ 3 . Let t ≥ 3 . Then there exists a shortest path

y, y₁, y₂, ..., y_t = v ε V₂. Therefore y, y₁, y₂, ..., y_{t+1} ε V₁. Also d (y_{t+1}, V₂) = 1, a contradiction.

(Since $d(z, V_2) = 1$). Suppose V_1 contains two vertices z, x. $d(z, V_2) = 1$. Let $d(x, V_2) = t$. Then $t \ge 2$. There exists a shortest path x, x_1 , x_2 ,..., $x_t = v \in V_2$. Since $t \ge 2$, $x_{t-1} \in V_1$ and $d(x_{t-1}, V_2) = 1$, a contradiction. If $V_1 = \{z\}$ and if $< V_2 >$ has an isolate say u, then u and z are adjacent and any path from any other vertex

of $\langle V_2 \rangle$ to z must contain u. Hence u is not an isolate of $\langle V_2 \rangle$, a contradiction. Therefore pd $_{s}(G) \ge 3$. The converse is obvious.

Theorem 2.4. pd $_{is}(G) = n$ if and only if V(G) can be partitioned into subsets V_1 and V_2 such that $G = \langle V_1 \rangle + \langle V_2 \rangle$. If any of $\langle V_1 \rangle$ and $\langle V_2 \rangle$ is connected, then its diameter less than or equal to 2 and if one of them is disconnected, then it is totally disconnected.

Proof: Suppose V(G) can be partitioned into subsets V_1 and V_2 such that $G = \langle V_1 \rangle + \langle V_2 \rangle$.

Case(i): Let one of $\langle V_1 \rangle$, $\langle V_2 \rangle$ be independent and other is connected with diameter less than or equal 2. Let diam($\langle V_2 \rangle$) = 2. Let x, y $\in V_1$. Let $\pi = \{\{x,y\},\{x_i\}\}$ where x_i runs over all the vertices of V₁- {x, y} and V₂. d(x,x_i) = 2 = d(y,x_i) for all x_i $\in V_1$ - {x, y} d(x,x_i) = 1 = d(y,x_i) for all x_i $\in V_2$. Therefore π is not a resolving partition. Suppose x, y $\in V_2$. Then d(x,x_i) = 1 = d(y,x_i) for all x_i $\in V_1$. Let z $\in V_2$ - {x, y}. If z is adjacent with y, then there exists a path x,z,...,u,y of length greater than or equal to 3, a contradiction. (Since diam($\langle V_2 \rangle$) = 2). Therefore z is adjacent with both x and y. (If z is not adjacent with both x and y, then diam($\langle V_2 \rangle$) = 2). Therefore d(x,z) = d(y,z). Therefore π is not a resolving partition. Therefore pd _w(G) = n. Let diam($\langle V_2 \rangle$) = 1. Then $\langle V_2 \rangle$ is complete. Therefore no two points of V₂ can be independent. Therefore pd _w(G) = n.

Case(ii): Let both $\langle V_1 \rangle$ and $\langle V_2 \rangle$ be independent. Then pd $_{is}(G) = n$.

Case(iii): Suppose $\langle V_1 \rangle$ is independent and $\langle V_2 \rangle$ is disconnected but not totally disconnected.

Let $V_1 = \{u_1, u_2, \dots, u_k\}$. Let $V_2 = \{\{u_{k+1}, u_{k+2}, \dots, u_n\}$. Let H_1 and H_2 be the components of

 $< V_2 >$. Since $< V_2 >$ is not totally disconnected, at least one of H₁, H₂ contains at least two vertices. Let H₁ contain at least two vertices. Since H₁ is connected, there exists two adjacent vertices in H₁ say x, z. Let y \in V(H₂). Let $\pi = \{\{x,y\},\{x_i\}\}$ where x₁ runs over all the vertices of V₁,

H₁ - {x}, H₂ - {y}. Since $z \in V$ (H₁), {z} $\in \pi$. d(x,z) = 1, d(y,z) = 2. Therefore π is an isolate vertex resolving partition of G, a contradiction, since $|\pi| = n - 1$.

Case(iv): Suppose $\langle V_1 \rangle$ and $\langle V_2 \rangle$ are connected and diam($\langle V_1 \rangle$) ≤ 2 , $1 \leq i \leq 2$. If diam($\langle V_1 \rangle$) = 1 for i = 1, 2 then G is complete and hence pd $_{ii}(G) = n$. If diam($\langle V_1 \rangle$) = 2 or diam($\langle V_2 \rangle$) = 2 then proceeding as in Case(i), we get that pd $_{ii}(G) = n$.

 $\label{eq:case} \begin{array}{l} Case(v): \mbox{ Suppose } < V_{\scriptscriptstyle 1} > \mbox{ is connected and } < V_{\scriptscriptstyle 2} > \mbox{ is disconnected but not totally disconnected. Then proceeding as in Case (iii), we get a contradiction.} \end{array}$

Conversely, suppose $pd_{is}(G) = n$.

Suppose V (G) cannot be partitioned into subsets V_1 and V_2 such that $G = \langle V_1 \rangle + \langle V_2 \rangle$.

Suppose G is complete. Then G can be partitioned into subsets V_1 and V_2 such that $G = \langle V_1 \rangle + \langle V_2 \rangle$.

Suppose G is not complete. Let $\{u_1, u_2, ..., u_k\}$ be a maximum independent set of G. Then $k \ge 2$.

Let $V_1 = \langle \{u_1, u_2, ..., u_k\} \rangle$ and $V_2 = \langle V - V_1 \rangle$. Since $G \neq \langle V_1 \rangle + \langle V_2 \rangle$, there exists $u_i \in V_1$ and $y \in V_2$ such that u_i and y are not adjacent. Since u_i is not an isolate of G and since u_i is an isolate of $\langle V_1 \rangle$, u_i is adjacent with some vertex say $z \in V_2$. Then $\pi = \{\{y,z\}, \{x_i\}\}$ where $x_i \in V_1$ or $x_i \in V_2$ - $\{y, z\}$, is an isolate vertex resolving partition. Since y, z are resolved by u_i . Therefore $pd_{is}(G) \leq n - 1$, a contradiction. Therefore G can be partitioned into subsets V_1 and V_2 such that $G = \langle V_1 \rangle + \langle V_2 \rangle$.

Suppose $\langle V_1 \rangle$ and $\langle V_2 \rangle$ are connected. Suppose diam($\langle V_1 \rangle$) ≥ 3 . (similar proof if diam($\langle V_2 \rangle$) ≥ 3). Then there exists a path $u = u_0$, $u_1, \dots, u_k = v$ in $\langle V_1 \rangle$ where $k = \text{diam}(\langle V_1 \rangle) \geq 3$. Let $\pi = \{\{u_0, u_k\}, \{x_i\}\}$ where $x_i \in V_1$

International Journal of Latest Engineering and Management Research (IJLEMR) ISSN: 2455-4847

www.ijlemr.com || Volume 02 - Issue 08 || August 2017 || PP. 01-03

 $- \{u_0, u_k\}, x_i \in V_2$. u_0, u_k are resolved by u_i . Therefore pd $_{is}(G) \le n - 1$, a contradiction. Therefore diam($\langle V_i \rangle) \le 2$.

Suppose V_1 is independent and $\langle V_2 \rangle$ is connected. Suppose diam($\langle V_2 \rangle$) ≥ 3 . Then proceeding as above pd $_{16}$ (G) $\leq n - 1$, a contradiction. Therefore diam($\langle V_2 \rangle$) ≤ 2 . Therefore $G = \langle V_1 \rangle + \langle V_2 \rangle$ and if any of $\langle V_1 \rangle$ and $\langle V_2 \rangle$ is connected, then its diameter less than or equal to 2 and if one of them is disconnected, then it is totally disconnected.

References

- [1]. G. Chartrand, E. Salehi and P. Zhang: The partition dimension of a graph, Aequationes Math. 59(2000), 45 -54.
- [2]. G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann: Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics, Vol. 105, Issues 1-3, pp. 99 113, (2000).
- [3]. G. Chartrand, F. Okamoto and P.Zhang, The metric chromatic number of a graph, Australasian Journal of Combinatorics, 44 (2009), 273-286.
- [4]. S. Hemalathaa, A. Subramanian, P. Aristotle and V. Swaminathan: Equivalence Resolving Partition of a Graph, communicated.
- [5]. V. Saenpholphat and P. Zhang, Connected partition dimensions of graphs, Discuss. Math. Graph Theory, 22(2002), 305-323.
- [6]. P. J. Slater: Leaves of trees, in: Proc 6th Southeast Conf. Comb., Graph Theory, Comput.; Boca Raton, 14 (1975), 549 559.
- [7]. P. J. Slater: Dominating and reference sets in graphs, J. Math. Phys. Sci. 22(1988), 445 455.