Isolate Vertex Resolving Partition in a Graph

S. Hemalathaa ${ }^{1}$, A. Subramanian ${ }^{2}$, P. Aristotle ${ }^{3}$, V.Swamianthan ${ }^{4}$
${ }^{1}$ (Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India)
${ }^{2}$ (Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India)
${ }^{3}$ (Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai - 630561, Tamilnadu, India)
${ }^{4}$ (Ramanujan Research Centre in Mathematics, Saraswathi Narayan College, Madurai-625022, Tamilnadu, India)

Abstract

Let $G=(V, E)$ be a simple connected graph. A partition $\Pi=\left\{V_{1}, V_{2}, V_{3}, \ldots, V_{k}\right\}$ is called a resolving partition of G if for any $u \in V(G)$, the code of u with respect to Π (denoted by $c_{n}(u)$) namely $\left(d\left(u, V_{1}\right), d\left(u, V_{2}\right), \ldots, d\left(u, V_{k}\right)\right)$ is distinct for different $u \in V(G)$ where $d\left(u, V_{i}\right)=\min \left\{d(u, x) / x \in V_{i}\right\}$. The minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted by pd (G) Several types of resolving partition have been considered like connected resolving partition, metric chromatic number of a graph (that is, independent resolving partition), equivalence resolving partition etc. In this paper, a new type of resolving partition is considered and in this partition, each element of the partition contains an isolate vertex in the subgraph induced by that element. This is a generalization of an independent resolving partition. This resolving partition is called an isolate vertex resolving partition in a graph. The minimum cardinality of an isolate vertex resolving partition is denoted by $\mathrm{pd}_{\text {is }}(\mathrm{G})$. This parameter for some well known graphs is found. Graphs for which $\mathrm{pd}_{\text {is }}(\mathrm{G})=2$ or $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$ are characterized.

Keywords: Central vertex, Isolate vertex partition dimension, Isolate Vertex resolving partition, Partition Dimension, Resolving partition.

1. Introduction

In this paper, G is a simple, finite, connected and undirected graph.
Definition 1.1. [1] Let $G=(V, E)$ be a simple, finite, connected and undirected graph. A partition $\Pi=\left\{V_{1}, V_{2}\right.$ $\left.\mathrm{V}_{3} \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ of $\mathrm{V}(\mathrm{G})$ is called a resolving partition of G if the code $\mathrm{c}_{\mathrm{n}}(\mathrm{u})=\left(\mathrm{d}\left(\mathrm{u}, \mathrm{V}_{1}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{V}_{2}\right), \ldots, \mathrm{d}\left(\mathrm{u}, \mathrm{V}_{\mathrm{k}}\right)\right)$ is distinct for different $u \in V(G)$ where $d\left(u, V_{i}\right)=\min \left\{d(u, x) / x \in V_{i}\right\}$. The minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted by pd (G).

Definition 1.2. Let $G=(V, E)$ be a simple connected graph. Let $\Pi=\left\{V_{1}, V_{2}, V_{3}, \ldots, V_{k}\right\}$ be a partition of $V(G)$. If each $\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle$ contains an isolate and if Π is a resolving partition, then Π is called an isolate vertex resolving partition. The trivial partition namely $\Pi=\left\{\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{u}_{2}\right\}, \ldots,\left\{\mathrm{u}_{n}\right\}\right\}$ where $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{n}\right\}$ is an isolate vertex resolving partition.
The minimum cardinality of an isolate vertex resolving partition is called the isolate vertex partition dimension of G and is denoted by $\mathrm{pd}_{{ }_{\text {is }}}(\mathrm{G})$.

Remark 1.3. Every independent resolving partition is an isolate vertex resolving partition. Therefore $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq \operatorname{ipd}(\mathrm{G}) \leq \operatorname{pd}(\mathrm{G})$.

2. $\mathrm{pd}_{\text {is }}(\mathbf{G})$ FOR WELL KNOWN GRAPHS

1. $\operatorname{pd}_{\text {is }}\left(K_{\mathrm{n}}\right)=\mathrm{n}$
2. $\quad \mathrm{pd}_{\text {is }}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{n}+1$
3. $\operatorname{pd}_{\text {is }}\left(K_{m, n}\right)=m+n$
4. $\operatorname{pd}_{\text {is }}\left(K_{\text {al,a2 }, \ldots, \ldots n}\right)=a_{1}+a_{2}+\ldots \ldots \ldots+a_{n}$
5. $\quad \operatorname{pd}_{\text {is }}\left(K_{m}\left(a_{1}, a_{2}, \ldots, a_{m}\right)\right)=\max \left\{a_{1}, a_{2}, \ldots \ldots, a_{m}\right\}$

Theorem 2.1. $\mathrm{pd}_{\text {is }}\left(\mathrm{W}_{\mathrm{n}}\right) \geq 5$ if $\mathrm{n} \geq 14$.
Proof: Suppose $\mathrm{n} \geq 14$.
Let $\Pi=\left\{\{\mathrm{u}\}, \mathrm{V}_{\mathrm{i}}, \mathrm{V}_{2}, \mathrm{~V}_{3}\right\}$ be an isolate vertex partition, where u is the central vertex. Every vertex $\mathrm{V}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 3)$ has code 1 with respect to $\{u\}$ and 0 with respect to V_{i}. Since there are only two more partitions and since the codes with respect to these two partitions can be either $(1,1)$ or $(1,2)$ or $(2,1)$ or $(2,2),\left|\mathrm{V}_{2}\right| \leq 4$ for all i. That is

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 08 || August 2017 || PP. 01-03
$\left|\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}\right| \leq 12$. Since there are 13 vertices in $\mathrm{V}_{1} \cup \mathrm{~V}_{2} \cup \mathrm{~V}_{3}$, we get a contradiction. Therefore $\mathrm{pd}_{\text {is }}\left(W_{n}\right) \geq 5$ if $\mathrm{n} \geq 14$.

Remark 2.2.

1. $\operatorname{pd}_{\text {is }}\left(\mathrm{W}_{\mathrm{n}}\right) \geq 6$ if $\mathrm{n} \geq 34$.
2. $\quad \mathrm{pd}_{\text {is }}\left(\mathrm{W}_{\mathrm{n}}\right) \geq 7$ if $\mathrm{n} \geq 82$.
3. $\mathrm{pd}_{\text {is }}\left(\mathrm{W}_{\mathrm{n}}\right) \geq \mathrm{k}+1$ if $\mathrm{n} \geq\left(2^{\mathrm{k}-2}+1\right)+(\mathrm{k}-2) 2^{\mathrm{k}-2}+1$.

Theorem 2.3. Let G be a connected graph of order n. Then $\mathrm{pd}_{\text {is }}(\mathrm{G})=2$ if and only if $G=K_{2}$.
Proof: Let $\Pi=\left\{V_{1}, V_{2}\right\}$ be a minimum isolate vertex resolving partition.
When $\mathrm{n}=2, \mathrm{~V}_{1}$ and V_{2} are singletons and $\mathrm{G}=\mathrm{K}_{2}$. When $\mathrm{n}=3, \Pi$ is not an isolate vertex resolving partition.
Suppose $\mathrm{n}=4$. Then $\mathrm{G}=K_{4}, C_{4}, \mathrm{~K}_{13}, \mathrm{~K}_{4}-\mathrm{e}, \mathrm{P}_{4}, \mathrm{~K}_{1,3}+\mathrm{e}$ and $\operatorname{pdis}(\mathrm{G})=4$. Let $\mathrm{n} \geq 5$. Let $\Pi=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ be a minimum isolate vertex resolving partition. V_{1} contains an isolate vertex say z . Then $\mathrm{d}\left(\mathrm{z}, \mathrm{V}_{2}\right)=1$. Suppose V_{1} contains three vertices say z, x and $y . c_{n}(z)=(0,1)$. Therefore $c_{n}(x)=(0, t)$, where $t \neq 1$ and $c_{n}(y)=(0, t)$, where $\mathrm{t} \neq 1, \mathrm{t} \neq \mathrm{t}$. Therefore one of $\mathrm{t}, \mathrm{t}^{\prime} \geq 3$. Let $\mathrm{t} \geq 3$. Then there exists a shortest path
$\mathrm{y}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{t}}=\mathrm{v} \varepsilon \mathrm{V}_{2}$. Therefore $\mathrm{y}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{t} \cdot-1} \in \mathrm{~V}_{1}$. Also $\mathrm{d}\left(\mathrm{y}_{\mathrm{t}-1}, \mathrm{~V}_{2}\right)=1$, a contradiction.
(Since $\left.d\left(z, V_{2}\right)=1\right)$. Suppose V_{1} contains two vertices $z, x . d\left(z, V_{2}\right)=1$. Let $d\left(x, V_{2}\right)=t$. Then $t \geq 2$. There exists a shortest path $x, x_{1}, x_{2}, \ldots, x_{1}=v \varepsilon V_{2}$. Since $t \geq 2, x_{t-1} \in V_{1}$ and $d\left(x_{t-1}, V_{2}\right)=1$, a contradiction. If $V_{1}=\{z\}$ and if $<$ $\mathrm{V}_{2}>$ has an isolate say u , then u and z are adjacent and any path from any other vertex
of $\left\langle V_{2}\right\rangle$ to z must contain u. Hence u is not an isolate of $\left\langle V_{2}\right\rangle$, a contradiction. Therefore $p d_{i s}(G) \geq 3$. The converse is obvious.

Theorem 2.4. $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$ if and only if $\mathrm{V}(\mathrm{G})$ can be partitioned into subsets V_{1} and V_{2} such that $\mathrm{G}=\left\langle\mathrm{V}_{1}\right\rangle+$ $\left\langle\mathrm{V}_{2}\right\rangle$. If any of $\left\langle\mathrm{V}_{1}\right\rangle$ and $\left\langle\mathrm{V}_{2}\right\rangle$ is connected, then its diameter less than or equal to 2 and if one of them is disconnected, then it is totally disconnected.
Proof: Suppose $V(G)$ can be partitioned into subsets V_{1} and V_{2} such that $G=\left\langle V_{1}\right\rangle+\left\langle V_{2}\right\rangle$.
Case(i): Let one of $\left\langle\mathrm{V}_{1}\right\rangle,\left\langle\mathrm{V}_{2}\right\rangle$ be independent and other is connected with diameter less than or equal 2. Let $\operatorname{diam}\left(\left\langle V_{2}\right\rangle\right)=2$. Let $x, y \in V_{1}$. Let $\Pi=\left\{\{x, y\},\left\{x_{i}\right\}\right\}$ where x_{i} runs over all the vertices of $V_{1-}\{x, y\}$ and V_{2}. $d\left(x, x_{i}\right)=2=d\left(y, x_{i}\right)$ for all $x_{i} \in V_{i}-\{x, y\} d\left(x, x_{i}\right)=1=d\left(y, x_{i}\right)$ for all $x_{i} \in V_{2}$. Therefore n is not a resolving partition. Suppose $x, y \in V_{2}$. Then $d\left(x, x_{i}\right)=1=d\left(y, x_{i}\right)$ for all $x_{i} \in V_{1}$. Let $z \in V_{2^{-}}\{x, y\}$. If z is adjacent with y, then there exists a path $\mathrm{x}, \mathrm{z}, \ldots \ldots, \mathrm{u}, \mathrm{y}$ of length greater than or equal to 3 , a contradiction. (Since $\operatorname{diam}\left(\left\langle\mathrm{V}_{2}\right\rangle\right)=$ 2). Therefore z is adjacent with both x and y. (If z is not adjacent with both x and y, then $\operatorname{diam}\left(\left\langle V_{2}\right\rangle\right)=2$). Therefore $\mathrm{d}(\mathrm{x}, \mathrm{z})=\mathrm{d}(\mathrm{y}, \mathrm{z})$. Therefore Π is not a resolving partition. Therefore $\mathrm{pd} \mathrm{is}(\mathrm{G})=\mathrm{n}$. Let $\operatorname{diam}\left(\left\langle\mathrm{V}_{2}\right\rangle\right)=1$. Then $\left\langle\mathrm{V}_{2}\right\rangle$ is complete. Therefore no two points of V_{2} can be independent. Therefore $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$.
Case(ii): Let both $\left\langle\mathrm{V}_{1}\right\rangle$ and $\left\langle\mathrm{V}_{2}\right\rangle$ be independent. Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$.
Case(iii): Suppose $\left\langle\mathrm{V}_{1}\right\rangle$ is independent and $\left\langle\mathrm{V}_{2}\right\rangle$ is disconnected but not totally disconnected.
Let $V_{1}=\left\{u_{1}, u_{2}, \ldots \ldots, u_{k}\right\}$. Let $V_{2}=\left\{\left\{u_{k+1}, \mathrm{u}_{k+2}, \ldots \ldots, \mathrm{u}_{n}\right\}\right.$. Let H_{1} and H_{2} be the components of
$\left\langle\mathrm{V}_{2}\right\rangle$. Since $\left\langle\mathrm{V}_{2}\right\rangle$ is not totally disconnected, at least one of $\mathrm{H}_{1}, \mathrm{H}_{2}$ contains at least two vertices. Let H_{1} contain at least two vertices. Since H_{1} is connected, there exists two adjacent vertices in H_{1} say x, z. Let y ϵ $\mathrm{V}\left(\mathrm{H}_{2}\right)$. Let $\Pi=\left\{\{\mathrm{x}, \mathrm{y}\},\left\{\mathrm{x}_{\mathrm{i}}\right\}\right\}$ where x_{i} runs over all the vertices of V_{i},
$H_{1}-\{x\}, H_{2}-\{y\}$. Since $z \in V\left(H_{1}\right),\{z\} \in \Pi . d(x, z)=1, d(y, z)=2$. Therefore Π is an isolate vertex resolving partition of G, a contradiction, since $|\Pi|=n-1$.
Case(iv): Suppose $\left\langle V_{1}\right\rangle$ and $\left\langle V_{2}\right\rangle$ are connected and $\operatorname{diam}\left(\left\langle V_{i}\right\rangle\right) \leq 2,1 \leq i \leq 2$. If $\left.\operatorname{diam}\left(<V_{i}\right\rangle\right)=1$ for $i=1$, 2 then G is complete and hence $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$. If $\operatorname{diam}\left(\left\langle\mathrm{V}_{1}\right\rangle\right)=2$ or $\operatorname{diam}\left(\left\langle\mathrm{V}_{2}\right\rangle\right)=2$ then proceeding as in Case(i), we get that $\mathrm{pd}_{\mathrm{is}^{\prime}}(\mathrm{G})=\mathrm{n}$.
Case(v): Suppose $\left\langle\mathrm{V}_{1}\right\rangle$ is connected and $\left\langle\mathrm{V}_{2}\right\rangle$ is disconnected but not totally disconnected. Then proceeding as in Case (iii), we get a contradiction.
Conversely, suppose $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$.
Suppose $V(G)$ cannot be partitioned into subsets V_{1} and V_{2} such that $G=\left\langle V_{1}\right\rangle+\left\langle V_{2}\right\rangle$.
Suppose G is complete. Then G can be partitioned into subsets V_{1} and V_{2} such that $G=\left\langle V_{1}\right\rangle+\left\langle V_{2}\right\rangle$.
Suppose G is not complete. Let $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{k}}\right\}$ be a maximum independent set of G . Then $\mathrm{k} \geq 2$.
Let $V_{1}=\left\langle\left\{u_{1}, u_{2}, \ldots \ldots, u_{k}\right\}\right\rangle$ and $V_{2}=\left\langle V-V_{1}\right\rangle$. Since $G \neq\left\langle V_{1}\right\rangle+\left\langle V_{2}\right\rangle$, there exists $u_{i} \in V_{1}$ and $y \in V_{2}$ such that u_{i} and y are not adjacent. Since u_{i} is not an isolate of G and since u_{i} is an isolate of $\left\langle V_{1}\right\rangle, u_{i}$ is adjacent with some vertex say $z \in V_{2}$. Then $\Pi=\left\{\{y, z\},\left\{x_{i}\right\}\right\}$ where $x_{i} \in V_{1}$ or $x_{i} \in V_{2}-\{y, z\}$, is an isolate vertex resolving partition. Since y, z are resolved by u_{i}. Therefore $p d_{i s}(G) \leq n-1$, a contradiction. Therefore G can be partitioned into subsets V_{1} and V_{2} such that $\mathrm{G}=\left\langle\mathrm{V}_{1}\right\rangle+\left\langle\mathrm{V}_{2}\right\rangle$.
Suppose $\left\langle\mathrm{V}_{1}\right\rangle$ and $\left\langle\mathrm{V}_{2}\right\rangle$ are connected. Suppose $\left.\operatorname{diam}\left(<\mathrm{V}_{1}\right\rangle\right) \geq 3$. (similar proof if $\left.\operatorname{diam}\left(<\mathrm{V}_{2}\right\rangle\right) \geq 3$). Then there exists a path $u=u_{0}, u_{1}, \ldots, u_{k}=v$ in $\left\langle V_{1}\right\rangle$ where $\left.k=\operatorname{diam}\left(<V_{1}\right\rangle\right) \geq 3$. Let $\Pi=\left\{\left\{u_{0}, u_{k}\right\},\left\{x_{i}\right\}\right\}$ where $x_{i} \in V_{1}$

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 08 || August 2017 || PP. 01-03
$-\left\{\mathrm{u}_{\mathrm{o}}, \mathrm{u}_{\mathrm{k}}\right\}, \mathrm{x}_{\mathrm{i}} \in \mathrm{V}_{2} . \mathrm{u}_{\mathrm{o}}, \mathrm{u}_{\mathrm{k}}$ are resolved by u_{i}. Therefore $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-1$, a contradiction. Therefore $\left.\operatorname{diam}\left(<\mathrm{V}_{1}\right\rangle\right) \leq$ 2.

Suppose V_{1} is independent and $\left\langle V_{2}\right\rangle$ is connected. Suppose $\operatorname{diam}\left(\left\langle V_{2}\right\rangle\right) \geq 3$. Then proceeding as above $\mathrm{pd}_{\text {is }}$ $(\mathrm{G}) \leq \mathrm{n}-1$, a contradiction. Therefore $\operatorname{diam}\left(\left\langle\mathrm{V}_{2}\right\rangle\right) \leq 2$. Therefore $\mathrm{G}=\left\langle\mathrm{V}_{1}\right\rangle+\left\langle\mathrm{V}_{2}\right\rangle$ and if any of $\left\langle\mathrm{V}_{1}\right\rangle$ and $\left\langle\mathrm{V}_{2}\right\rangle$ is connected, then its diameter less than or equal to 2 and if one of them is disconnected, then it is totally disconnected.

References

[1]. G. Chartrand, E. Salehi and P. Zhang: The partition dimension of a graph, Aequationes Math. 59(2000), 45-54.
[2]. G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann: Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics, Vol. 105,Issues 1-3, pp. 99-113, (2000).
[3]. G. Chartrand, F. Okamoto and P.Zhang, The metric chromatic number of a graph, Australasian Journal of Combinatorics, 44 (2009), 273-286.
[4]. S. Hemalathaa, A. Subramanian, P. Aristotle and V. Swaminathan: Equivalence Resolving Partition of a Graph, communicated.
[5]. V. Saenpholphat and P. Zhang, Connected partition dimensions of graphs, Discuss. Math. Graph Theory, 22(2002), 305-323.
[6]. P. J. Slater: Leaves of trees, in: Proc 6th Southeast Conf. Comb., Graph Theory, Comput.; Boca Raton, 14 (1975), 549 - 559.
[7]. P. J. Slater: Dominating and reference sets in graphs, J. Math. Phys. Sci. 22(1988), 445-455.

