
International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 49 | Page

Prediction of Software Defects Using Zero R

Abstract: In the software field the quality and the reliability are the important factors which have to be greatly

handled with the help of software defect prediction. During the period of development and the maintenance of

the software detecting and rectifying the software defects is really more expensive. By designing prediction

model which accurately determines the occurrence of defect in software greatly assist in efficient software

testing, reducing the cost and considerably improvising testing process of software by focusing on fault prone

modules. Machine Learning Classifiers have emerged as a way to predict the fault in the software system. This

paper focuses on predicting the software defect contributed by NASA repository dataset. In this work three

different classifiers are used namely naïve bayes, simple logistics and Zero R. The experimental result shows

that the performance of predicting software is highly classified using Zero R than remaining two classifiers.

Thus it helps in increasing the quality and reliability of software.

Keywords: Software, defect, quality, detect, fault, predict.

Introduction
With the help of software metrics and the software fault dataset which was collected from the earlier

developed software or projects based on the prediction model is trained and developed for software defect

detection. This well trained model can then be applied to unknown defect data of any software module. The

performance of the defect prediction is greatly influenced by the attributes of the software metrics which

increases the efficiency of the software considerably. As sovereign testing team, it is significant to map and

administer the test implementation behavior in order to convene the tight limit for releasing the software to end-

users. Since the aspire of test carrying out is to determine as many fault as possible, testing team is typically put

into encumber to guarantee all defects are establish and set by the developers inside the system testing stage.

Extra number of days has to be added to the timeline to contain testing team in effecting their test with

the trust that all defects have been originate and set. On the other hand, the stakeholders would also ask the

difficult team on the forecasted defects in the software so that they could choose whether the software is

reasonable and robust for release. This is owing to the environment that system testing is the last gate before the

software is made visible to end-users, thus as the custodian of executing system testing, the autonomous testing

team has to take liability to ensure software to be unrestricted is of high excellence.

Therefore, the ability to predict how many defects that can be found at the start of system testing shall

be a good way to tackle this issue. This becomes the reason for conducting this study. Besides serving as a target

on how many defects to capture in system testing, defect prediction can also become an early quality indicator

for any software entering the testing phase. Testing team can use the predicted defects to plan, manage and

control test execution activities. This could be in the form aligning the test execution time and number of test

engineers assigned to particular testing project. Having defect prediction as part of the testing process allows

testing team to strengthen their test Strategies by adding more exploratory testing and user experience testing to

ensure known defects are not escaped and re-introduced to end-users.

Related Work
Software defect prediction is not a new thing in software engineering domain. To come out with the

right defect prediction model various related studies and approaches have been conducted. Understanding what

defect really means is important so that the term defect is not confused with error, mistake or failure. In the

event the defect have taken place, when the software or system fails to perform its desired function [1]. Defect is

also observed as the deviation from its specification [2] as well as any imperfection related to software itself and

its related work product [3]. Consequently, defect can be referred as its work product and something that is not

according to requirement for software. Since, the defects means it is the structure the prediction model for

defects, it is used to know how defects are introduced as part of verification and validation (V&V) activities [3].

Defects predicting can be characterized in the proactive process of many types of defects that can be found in

software’s content, design and codes in producing high quality product [4]. To predict defect density Rayleigh

model was also used for different phases of project life cycle [5]. In [6] product and project metrics collected

from design review, code testing, code peer review as well as product release usage and defect validation can be

constructed using the model to predict defects. Linear regression was applied to these metrics via product

metrics only, project metrics only and both. As the result, both product and project metrics provided better

correlation between defects and the predictors using linear regression. It demonstrated the feasibility of using

regression analysis to build defect prediction model at the same time. To predict defects an approach was carried

out using mathematical distributions that serve as quality prediction model [7].

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 50 | Page

In order to identify and predict the highest defects in the large software systems will prone to more

defect is investigated was performed in it. The important factor for the prediction and its impact to the model

quality is development information will be the result of the investigation, which focuses on three metrics:

number of developers who modified the file during the prior release; the number of new developers who

modified the file during the prior release; and the cumulative number of distinct developers who modified the

file during all releases through the prior release [8].

We also study to investigate on how to defect fault-proneness in the source code of the open source

Web and e-mail suite called Mozilla.To conduct the investigation it used object-oriented metrics proposed by

Chidamber and Kemerer [9]. On the other hand, [10] to build defect prediction model was proposed several

inputs to simulate the system test phase, in which those inputs could be considered as potential predictors. The

defect prediction was based on simple Bayesian Network in a form of Defect Type Model (DTM) that predicts

defects based on severity minor, major and minor was the another approach to defects prediction [11]. To come

out with defect inflow prediction for large software projects either short-term defect inflow prediction or long-

term defect inflow prediction [12] is used by Multivariate linear regression. [13] To predict defect density

statistical approach in Six Sigma methodology is applied. In this case, Statistical method was used against the

function point as the base metrics to predict defect density before releasing software to production. Defect

prediction can also be observed from different perspective which is by predicting remaining total number of

defects while the testing activities are still on-going [14], which is called as defect decay model. This model

depends on on-going test execution data instead of historical data. [15] Case studies can be presented on

building and assisting their organization to assess testing effectiveness and predict the quantity of post release

defects and enables quantitative decision about production go-live readiness the defect prediction model was

used.

Their model was mostly focused on predicting defects in receiving test or manufacture which involves

estimate total possible defects based on defined thorough requirements, applying defect elimination efficiency

and finally estimates the defects per phase as well as post discharge defects. It display a 1% defect removal

efficiency improvement which equals to $20,000 for implementing this model, The defect prediction would be

difficult However, if past data is not available. Sample-based defect prediction was proposed to overcome this

difficulty by using a small sample of modules to construct cost-effective defect forecast models for large scale

systems, in which Co Forest, a semi supervised learning method was applied [16]. For defect prediction testing

resources portion could be optimized, [17] on predicting defects of cross-project when chronological data is not

in place possibility study must be conducted.

The training data is very significant for machine learning based defect prediction provided that the data

is carefully selected from the projects was demonstrated as results. Building of defect prediction system, it is

necessary to couple with the technique to find its success. In [18] the authors proposed to compute the percent of

faults establish in the recognized files as one of the ways to review the efficiency of the prediction Systems. In

addition that, the model is said to be a good if it can help in the resource planning in order to maintain the

software and insure based on the software system itself is insured [19]. However, it is firm to discover an

recognized standard specific for defect prediction. An attempt was taken by given that an all-embracing contrast

of well-known bug prediction approaches, jointly with narrative approaches using openly available dataset

consisting of numerous software systems [20]. The findings showed that there is still a difficulty with observe to

exterior soundness in defect prediction. It necessitate larger mutual data set towards having a noteworthy target

of defect prediction

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 51 | Page

Methodology

Figure 1 Architecture of proposed software defect detection model

The figure 1 depicts the work flow of proposed model in this the dataset named as CM1 is collected

from NASA repository. The selected raw dataset is preprocessed using normalization approach in which the

dataset are converted to the values of the same range. The three different classification models namely naïve

bayes, simple logistics and Zero R are applied on the selected dataset to classify whether the given software

module is prone to defect or not. The performance comparison is done using weka tool kit. The result shows that

the Zero R classifier produces that higher percentage of accuracy in software defect prediction

ZeroR

ZeroR is the simplest classification method which relies on the target and ignores all predictors. ZeroR

classifier simply predicts the majority category (class). Although there is no predictability power in ZeroR, it is

useful for determining a baseline performance as a benchmark for other classification methods.

ZeroR is the simplest classification method which relies on the target and ignores all predictors .ZeroR classifier

[25] simply predicts the majority category (class). Although there is no predictability power in ZeroR, it is

useful for determining a baseline performance as a benchmark for other classification methods. Algorithm

Construct a frequency table for the target and select its most frequent value. Predictors Contribution There is

nothing to be said about the predictors contribution to the model because ZeroR does not use any of them.

Model Evaluation The ZeroR only predicts the majority class correctly. As mentioned before, ZeroR is only

useful for determining a baseline performance for other classification methods.

Naive Bayes classifiers

Naive Bayes has been studied extensively since the 1950s. It was introduced under a different name

into the text retrieval community in the early 1960s, [21] and remains a popular (baseline) method for text

categorization, the problem of judging documents as belonging to one category or the other (such as spam or

legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is

competitive in this domain with more advanced methods including support vector machines. [22] It also finds

application in automatic medical diagnosis. [23]

Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables

(features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-

form expression, [21] which takes linear time, rather than by expensive iterative approximation as used for

many other types of classifiers.

CM

data

base

Processing

normalizatio

n

Classifier model

Navie

bayes

Simply

logistics

Zero R

Performance

comparison of

software prediction

models

https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Spam_filtering
https://en.wikipedia.org/wiki/Spam_filtering
https://en.wikipedia.org/wiki/Spam_filtering
https://en.wikipedia.org/wiki/Bag_of_words
https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Maximum-likelihood_estimation
https://en.wikipedia.org/wiki/Closed-form_expression
https://en.wikipedia.org/wiki/Closed-form_expression
https://en.wikipedia.org/wiki/Linear_time
https://en.wikipedia.org/wiki/Iterative_method

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 52 | Page

In the statistics and computer science literature, Naive Bayes models are known under a variety of names,

including simple Bayes and independence Bayes. [24] All these names reference the use of Bayes' theorem in

the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method. [21][24].

Algorithm
Bayes theorem provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and

P(x|c). Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is

independent of the values of other predictors. This assumption is called class conditional independence.

 P(c|x) is the posterior probability of class (target) given predictor (attribute).

 P(c) is the prior probability of class.

 P(x|c) is the likelihood which is the probability of predictor given class.

 P(x) is the prior probability of predictor.

Simple Logistic Regression

Classifier for building linear logistic regression models. LogitBoost with simple regression functions as

base learners is used for fitting the logistic models. The optimal number of LogitBoost iterations to perform is

cross-validated, which leads to automatic attribute selection.

Experimental result

This section discuss on performance of three different classifiers towards software defect prediction.

The dataset used in this paper is a complexity metric of a software. The weka tool kit is used for performing

prediction process

Figure 2 Loading software defect dataset in weka

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Bayesian_probability

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 53 | Page

Figure 3 Distribution of attribute values from the selected dataset

Evaluation Metrics

This work used NASA dataset namely CM1. In order to classify the software module as defect or no

defect using naïve bayes, simple logistics and Zero R classifier are applied and their performance is compared

using the following metrics.

Table 3: The confusion matrix for the software defect prediction is depicted in the following table 3.

Module actually has defects

No (P) Yes (N)

Classifier predicts no defects No

(P)

a

(TP)

b

(FP)

Classifier predicts some defects Yes

(N)

C

(FN)

d

(TN)

TP = true positives: number of examples predicted positive that are actually positive

FP = false positives: number of examples predicted positive that are actually negative

TN = true negatives: number of examples predicted negative that are actually negative

FN = false negatives: number of examples predicted negative that are actually positive

Accuracy =
dcba

da




 =

fnfptntp

tntp





 (18)

Probability of Detection = PD =Recall =
db

d


=

fntp

tp


 (19)

Probability of False Alarm = PF =
ca

c


 =

fptp

fp


(20)

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 54 | Page

Precision =
dc

d


=

fptp

tp


(21)

F –Measure = 2 *
recallecision

recallecision

Pr

.Pr

 (22)

Relative Absolute Error =
||...||

||...||

1

11

n

nn

aaaa

apap





(23)

Root relative squared error =
22

1

22

11

)(...)(

)(...)(

n

nn

aaaa

apap





(24)

Where,

 Actual target values: a1 a2 … an

 Predicted target values: p1 p2 … pn

 Mean value of actual target values: a

Dataset Description
This subsection describes the datasets used in this work. Four public data sets CM1, JM1, PC1 and

KC1obtained from NASA MDP [1, 2] Repositorymade available by PROMISE [3]are used for evaluation of the

proposed work. Each of these dataset consists of a set of features characterized by static code metrics, such as

LOC counts, Halstead and McCabe complexity metrics. These features are characterizing objectively the

software quality. The In McCabe metrics are a collection of four software metrics:Essential complexity,

cyclomatic complexity, design complexity and Lines of Code.CM1 dataset consists of 498 instances, JM1

consists of 10885, KC1 dataset consists o 2109 instances and PC1 contains 1109 instances. All the 4 dataset

consists of 22 attributes. In the dataset 5 of the attributes are used for representing different lines of code

measure, 3 attributes represents the McCabe metrics, 4 attributes refers to Halstead measures, 8 attributes refers

derived Halstead measures, a branch-count attribute, and 1 goal field attribute which is called as class which

classifies the instance as presence or absence of defect.

Table 4 shows the description of each attributes used in the four dataset of this research work.

Table 4: Attribute Description of the four Dataset

S.No Variables Description

1 Loc McCabe's line count of code

2 v(g) McCabe "cyclomatic complexity"

3 ev(g) McCabe "essential complexity"

4 iv(g) McCabe "design complexity"

5 N Halstead total operators + operands

6 V Halstead "volume"

7 L Halstead "program length"

8 D Halstead "difficulty"

9 I Halstead "intelligence"

10 E Halstead "effort"

11 B Halstead

12 T Halstead's time estimator

13 lOCode Halstead's line count

14 lOComment Halstead's count of lines of comments

15 lOBlank Halstead's count of blank lines

16 lOCodeAndComment

17 uniq_Op unique operators

18 uniq_Opnd unique operands

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 55 | Page

19 total_Op total operators

20 total_Opnd total operands

21 branchCount % of the flow graph

22 Defects Yes/No module has/has not one or more

Performance of Naïve Bayes Classifier

The table 2 shows the performance of the classifier naïve bayes which holds 85.3% as correctly

classified and 14.65% as incorrectly classified. The relative absolute error is 85% and the root relative squared

error is 127.57%. The True positive rate and false positive rate is .91 and .67 respectively. The naïve bayes on

the whole performs lowest while comparing the other two methods.

The table 3 shows the performance of the classifier simple logistics which holds 89% as correctly

classified and 10.8% as incorrectly classified as presence of software defect or not. The relative absolute error is

205% and the root relative squared error is 145.57%. The True positive rate and false positive rate is .98 and 1

respectively.

Performance of Naïve Bayes Classifier

Correctly classified 85.3414

Incorrectly classified 14.6586

Mean absolute error 0.1524

Root mean squared error 0.38

Relative absolute error 85.2218 %

Root relative squared error 127.572 %

TPR
0.911

FP rate
0.673

Precision
0.925

Recall
0.911

F measure
0.918

Performance of SL Classifier

Correctly classified 89.1566

Incorrectly classified 10.8434

Mean absolute error 0.3682

Root mean squared error 0.4327

Relative absolute error 205.8763 %

Root relative squared error 145.2821 %

TPR
0.989

FP rate
1

Precision
0.901

Recall
0.989

F measure
0.943

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 56 | Page

The table 4 shows the performance of the classifier Zero R which holds 90% as correctly classified and

9.8% as incorrectly classified as presence of software defect or not. The relative absolute error is 100% and the

root relative squared error is 100%. The True positive rate and false positive rate is 1 and 1 respectively.

Figure 4 Software defect prediction analysis of three classifier based on correctly and incorrectly classified

instances

The figure 4 and 5shows that the performance of the ZeroR performs better than the remaining two

classifiers by analyzing the correctly and incorrectly classified instances.

0

20

40

60

80

100

Naïve
Bayes

Simple
Logistic

Zero R

Software Defect
Prediction Analysis

Correctly classified

Incorrectly classified

Performance of Zeror Classifier

Correctly classified 90.1606

Incorrectly classified 9.8394

Mean absolute error 0.1789

Root mean squared

error 0.2979

Relative absolute error

100 %

Root relative squared

error

100 %

TPR
1

FP rate
1

Precision
0.902

Recall
1

F measure
0.948

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 57 | Page

Figure 5 Performance comparisons of three classifiers

Conclusion
Predicting the software defect in advance is a very challenging problem. To overcome this and handle

efficiently the data mining techniques greatly assist in finding it. This paper aims at developing the best

classifier for predicting the software defect presence. The experimental result is done using the weka toolkit.

The three classifiers namely naïve bayes, simple logistics and zero r are analyzed for determining the predicting

process. The result shows that the performance of Zero R plays more accurately in predicting the presence of

software defect.

Reference
[1]. G. Graham, E.V. Veenendaal, I. Evans, R. Black, ―Foundations of Software Testing: ISTQB

Certification‖, Thomson Learning, United Kingdom, 2007.

[2]. N.E. Fenton, M. Neil, ―A Critique of Software Defect Prediction Models‖, IEEE Transactions on

Software Engineering, vol. 25, no.5, pp.675-689, 1999.

[3]. B. Clark, D. Zubrow, ―How Good is the Software: A Review of Defect Prediction Techniques‖,

Carnegie Mellon University, USA, 2001.

[4]. V. Nayak, D. Naidya, ―Defect Estimation Strategies‖, Patni Computer Systems Limited, Mumbai,

2003.

[5]. M. Thangarajan, B. Biswas, ―Software Reliability Prediction Model‖, Tata Elxsi Whitepaper, 2002.

[6]. D. Wahyudin, A. Schatten, D. Winkler, A.M. Tjoa, S. Biffl, ―Defect Prediction using Combined

Product and Project Metrics: A Case Study from the Open Source ―Apache‖ MyFaces Project Family‖

In Proceedings of Software Engineering and Advanced Applications (SEAA '08), 34
th
 Euromicro

Conference, pp. 207-215, 2008.

[7]. I. Sinovcic, L. Hribar, ―How to Improve Software Development Process using Mathematical Models

for Quality Prediction and Element of Six Sigma Methodology‖, In Proceedings of the 33rd

International Conventionions 2010 (MIPRO 2010), pp. 388-395, 2010.

[8]. E.J. Weyuker, T.J. Ostrand, R.M. Bell, ―Using Developer Information as a Factor for Fault Prediction‖,

In Proceedings of the Third International Workshop on Predictor Models in Software Engineering

(PROMISE'07), pp.8, 2007.

[9]. T. Gyimothy, R. Ferenc, I. Siket, ―Empirical Validation of Object-Oriented Metrics on Open Source

Software for Fault Prediction‖, IEEE Transactions on Software Engineering, vol. 31, no.10, pp. 897-

910, 2005.

[10]. J.S. Collofello, ―Simulating the System Test Phase of the Software Development Life Cycle‖, In

Proceedings of the 2002 Summer Software Computer Simulation Conference, 2002.

[11]. L. RadliRski, ―Predicting Defect Type in Software Projects‖, Polish Journal of Environmental Studies,

vol.18, no. 3B, pp. 311-315, 2009.

[12]. M. Staron, W. Meding, ―Defect Inflow Prediction in Large Software Projects‖, e-Informatica Software

Engineering Journal, vol. 4, no. 1, pp. 1-23, 2010.

[13]. T. Fehlmann, ―Defect Density Prediction with Six Sigma‖, Presentation in Software Measurement

European Forum, 2009.

0

0.2

0.4

0.6

0.8

1

1.2

Performance Comparison of
three different Classifiers

Naïve Bayes

International Journal of Latest Engineering and Management Research (IJLEMR)
ISSN: 2455-4847
www.ijlemr.com || Volume 02 - Issue 12 || December 2017 || PP. 49-58

www.ijlemr.com 58 | Page

[14]. S.W. Haider, J.W. Cangussu, K.M.L. Cooper, R. Dantu, ―Estimation of Defects Based on Defect

Decay Model: ED3M‖, IEEE Transactions on Software Engineering, vol. 34, no. 3, pp. 336-356, 2008.

[15]. L. Zawadski, T. Orlova, ―Building and Using a Defect Prediction Model‖, Presentation in Chicago

Software Process Improvement Network, 2012.

[16]. M. Li, H. Zhang, R. Wu, Z.H. Zhou, ―Sample-based Software Defect Prediction with Active and Semi-

supervised Learning‖, Journal of Automated Software Engineering, vol. 19, no. 2, pp. 201-230, 2012.

[17]. Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, ―An Investigation on the Feasibility of Cross-Project Defect

Prediction‖, Journal of Automated Software Engineering, vol. 19, no. 2, pp. 167-199, 2012.

[18]. T.J. Ostrand, E.J. Weyuker, ―How to Measure Success of Fault Prediction Models‖, In Proceedings of

Fourth International Workshop on Software Quality Assurance 2007 (SOQUA ’07), pp. 25-30, 2007.

[19]. L.P. Li, M. Shaw, J. Herbsleb, ―Selecting a Defect Prediction Model for Maintenance Resource

Planning and Software Insurance‖, In Proceedings of 5th Workshop on Economics-Driven Software

Engineering Research (EDSER '03), pp. 32-37, 2003.

[20]. M. D’Ambros, M. Lanza, R. Robbes, ―Evaluating Defect Prediction Approaches: A Benchmark and an

Extensive Comparison, Journal of Empirical Software Engineering, vol. 17, no. 4-5, pp. 531-577, 2012.

[21]. Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Approach (2nd ed.).

Prentice Hall. ISBN 978-0137903955.

[22]. Rennie, J.; Shih, L.; Teevan, J.; Karger, D. (2003). Tackling the poor assumptions of Naive Bayes

classifiers (PDF). ICML.

[23]. Rish, Irina (2001). An empirical study of the naive Bayes classifier (PDF). IJCAI Workshop on

Empirical Methods in AI.

[24]. Hand, D. J.; Yu, K. (2001). "Idiot's Bayes — not so stupid after all?". International Statistical Review.

69 (3): 385–399. ISSN 0306-7734. doi:10.2307/1403452.

[25]. http://chem-eng.utoronto.ca/~datamining/dmc/zeror.htm

https://en.wikipedia.org/wiki/Stuart_J._Russell
https://en.wikipedia.org/wiki/Peter_Norvig
https://en.wikipedia.org/wiki/Artificial_Intelligence:_A_Modern_Approach
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0137903955
http://people.csail.mit.edu/~jrennie/papers/icml03-nb.pdf
http://people.csail.mit.edu/~jrennie/papers/icml03-nb.pdf
http://people.csail.mit.edu/~jrennie/papers/icml03-nb.pdf
http://www.research.ibm.com/people/r/rish/papers/RC22230.pdf
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0306-7734
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.2307%2F1403452

