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Prediction of Software Defects Using Zero R  
 

Abstract: In the software field the quality and the reliability are the important factors which have to be greatly 

handled with the help of software defect prediction. During the period of development and the maintenance of 

the software detecting and rectifying the software defects is really more expensive. By designing prediction 

model which accurately determines the occurrence of defect in software greatly assist in efficient software 

testing, reducing the cost and considerably improvising testing process of software by focusing on fault prone 

modules. Machine Learning Classifiers have emerged as a way to predict the fault in the software system. This 

paper focuses on predicting the software defect contributed by NASA repository dataset. In this work three 

different classifiers are used namely naïve bayes, simple logistics and Zero R. The experimental result shows 

that the performance of predicting software is highly classified using Zero R than remaining two classifiers. 

Thus it helps in increasing the quality and reliability of software. 

Keywords: Software, defect, quality, detect, fault, predict. 

 

Introduction 
With the help of software metrics and the software fault dataset which was collected from the earlier 

developed software or projects based on the prediction model is trained and developed for software defect 

detection. This well trained model can then be applied to unknown defect data of any software module. The 

performance of the defect prediction is greatly influenced by the attributes of the software metrics which 

increases the efficiency of the software considerably. As sovereign testing team, it is significant to map and 

administer the test implementation behavior in order to convene the tight limit for releasing the software to end-

users. Since the aspire of test carrying out is to determine as many fault as possible, testing team is typically put 

into encumber to guarantee all defects are establish and set by the developers inside the system testing stage. 

Extra number of days has to be added to the timeline to contain testing team in effecting their test with 

the trust that all defects have been originate and set. On the other hand, the stakeholders would also ask the 

difficult team on the forecasted defects in the software so that they could choose whether the software is 

reasonable and robust for release. This is owing to the environment that system testing is the last gate before the 

software is made visible to end-users, thus as the custodian of executing system testing, the autonomous testing 

team has to take liability to ensure software to be unrestricted is of high excellence.  

Therefore, the ability to predict how many defects that can be found at the start of system testing shall 

be a good way to tackle this issue. This becomes the reason for conducting this study. Besides serving as a target 

on how many defects to capture in system testing, defect prediction can also become an early quality indicator 

for any software entering the testing phase. Testing team can use the predicted defects to plan, manage and 

control test execution activities. This could be in the form aligning the test execution time and number of test 

engineers assigned to particular testing project. Having defect prediction as part of the testing process allows 

testing team to strengthen their test Strategies by adding more exploratory testing and user experience testing to 

ensure known defects are not escaped and re-introduced to end-users. 

 

Related Work 
Software defect prediction is not a new thing in software engineering domain. To come out with the 

right defect prediction model various related studies and approaches have been conducted. Understanding what 

defect really means is important so that the term defect is not confused with error, mistake or failure. In the 

event the defect have taken place, when the software or system fails to perform its desired function [1]. Defect is 

also observed as the deviation from its specification [2] as well as any imperfection related to software itself and 

its related work product [3]. Consequently, defect can be referred as its work product and something that is not 

according to requirement for software. Since, the defects means it is the structure the prediction model for 

defects, it is used  to know how defects are introduced as part of verification and validation (V&V) activities [3]. 

Defects predicting can be characterized in the proactive process of many types of defects that can be found in 

software’s content, design and codes in producing high quality product [4]. To predict defect density Rayleigh 

model was also used for different phases of project life cycle [5]. In [6] product and project metrics collected 

from design review, code testing, code peer review as well as product release usage and defect validation can be  

constructed using the model to predict defects. Linear regression was applied to these metrics via product 

metrics only, project metrics only and both. As the result, both product and project metrics provided better 

correlation between defects and the predictors using linear regression. It demonstrated the feasibility of using 

regression analysis to build defect prediction model at the same time. To predict defects an approach was carried 

out using mathematical distributions that serve as quality prediction model [7].  
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In order to identify and predict the highest defects in the large software systems will prone to more 

defect is investigated was performed in it. The important factor for the prediction and its impact to the model 

quality is development information will be the  result of the investigation, which focuses on three metrics: 

number of developers who modified the file during the prior release; the number of new developers who 

modified the file during the prior release; and the cumulative number of distinct developers who modified the 

file during all releases through the prior release [8]. 

We also study to investigate on how to defect fault-proneness in the source code of the open source 

Web and e-mail suite called Mozilla.To conduct the investigation it used object-oriented metrics proposed by 

Chidamber and Kemerer [9]. On the other hand, [10] to build defect prediction model was  proposed several 

inputs to simulate the system test phase, in which those inputs could be considered as potential predictors. The 

defect prediction was based on simple Bayesian Network in a form of Defect Type Model (DTM) that predicts 

defects based on severity minor, major and minor was the  another approach to defects prediction [11]. To come 

out with defect inflow prediction for large software projects either short-term defect inflow prediction or long-

term defect inflow prediction [12] is used by Multivariate linear regression. [13] To predict defect density 

statistical approach in Six Sigma methodology is applied. In this case, Statistical method was used against the 

function point as the base metrics to predict defect density before releasing software to production. Defect 

prediction can also be observed from different perspective which is by predicting remaining total number of 

defects while the testing activities are still on-going [14], which is called as defect decay model. This model 

depends on on-going test execution data instead of historical data. [15] Case studies can be presented on 

building and  assisting their organization to assess testing effectiveness and predict the quantity of post release 

defects and enables quantitative decision about production go-live readiness the defect prediction model was 

used. 

Their model was mostly focused on predicting defects in receiving test or manufacture which involves 

estimate total possible defects based on defined thorough requirements, applying defect elimination efficiency 

and finally estimates the defects per phase as well as post discharge defects. It display a 1% defect removal 

efficiency improvement which equals to $20,000 for implementing this model, The  defect prediction would be 

difficult However, if past data is not available. Sample-based defect prediction was proposed to overcome this 

difficulty by using a small sample of modules to construct cost-effective defect forecast models for large scale 

systems, in which Co Forest, a semi supervised learning method was applied [16]. For defect prediction testing 

resources portion could be optimized, [17] on predicting defects of cross-project when chronological data is not 

in place possibility study must be conducted. 

The training data is very significant for machine learning based defect prediction provided that the data 

is carefully selected from the projects was demonstrated as results. Building of defect prediction system, it is 

necessary to couple with the technique to find its success. In [18] the authors proposed to compute the percent of 

faults establish in the recognized files as one of the ways to review the efficiency of the prediction Systems. In 

addition that, the model is said to be a good if it can help in the resource planning in order to maintain the 

software and insure based on the software system itself is insured [19]. However, it is firm to discover an 

recognized standard specific for defect prediction. An attempt was taken by given that an all-embracing contrast 

of well-known bug prediction approaches, jointly with narrative approaches using openly available dataset 

consisting of numerous software systems [20]. The findings showed that there is still a difficulty with observe to 

exterior soundness in defect prediction. It necessitate larger mutual data set towards having a noteworthy target 

of defect prediction 
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Figure 1 Architecture of proposed software defect detection model 

 

The figure 1 depicts the work flow of proposed model in this the dataset named as CM1 is collected 

from NASA repository. The selected raw dataset is preprocessed using normalization approach in which the 

dataset are converted to the values of the same range. The three different classification models namely naïve 

bayes, simple logistics and Zero R are applied on the selected dataset to classify whether the given software 

module is prone to defect or not. The performance comparison is done using weka tool kit. The result shows that 

the Zero R classifier produces that higher percentage of accuracy in software defect prediction   

 

ZeroR  

ZeroR is the simplest classification method which relies on the target and ignores all predictors. ZeroR 

classifier simply predicts the majority category (class). Although there is no predictability power in ZeroR, it is 

useful for determining a baseline performance as a benchmark for other classification methods. 

ZeroR is the simplest classification method which relies on the target and ignores all predictors .ZeroR classifier 

[25] simply predicts the majority category (class). Although there is no predictability power in ZeroR, it is 

useful for determining a baseline performance as a benchmark for other classification methods. Algorithm 

Construct a frequency table for the target and select its most frequent value. Predictors Contribution There is 

nothing to be said about the predictors contribution to the model because ZeroR does not use any of them.  

Model Evaluation The ZeroR only predicts the majority class correctly. As mentioned before, ZeroR is only 

useful for determining a baseline performance for other classification methods. 

 

Naive Bayes classifiers 

Naive Bayes has been studied extensively since the 1950s. It was introduced under a different name 

into the text retrieval community in the early 1960s, [21] and remains a popular (baseline) method for text 

categorization, the problem of judging documents as belonging to one category or the other (such as spam or 

legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is 

competitive in this domain with more advanced methods including support vector machines. [22] It also finds 

application in automatic medical diagnosis. [23]  

Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables 

(features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-

form expression, [21] which takes linear time, rather than by expensive iterative approximation as used for 

many other types of classifiers. 
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In the statistics and computer science literature, Naive Bayes models are known under a variety of names, 

including simple Bayes and independence Bayes. [24] All these names reference the use of Bayes' theorem in 

the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method. [21][24].
  

 

Algorithm  
Bayes theorem provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and 

P(x|c). Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is 

independent of the values of other predictors. This assumption is called class conditional independence. 

 
 P(c|x) is the posterior probability of class (target) given predictor (attribute).  

 P(c) is the prior probability of class.  

 P(x|c) is the likelihood which is the probability of predictor given class.  

 P(x) is the prior probability of predictor. 

 

Simple Logistic Regression 

Classifier for building linear logistic regression models. LogitBoost with simple regression functions as 

base learners is used for fitting the logistic models. The optimal number of LogitBoost iterations to perform is 

cross-validated, which leads to automatic attribute selection. 

 

Experimental result  

This section discuss on performance of three different classifiers towards software defect prediction. 

The dataset used in this paper is a complexity metric of a software. The weka tool kit is used for performing 

prediction process  

 

 
Figure 2 Loading software defect dataset in weka 
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Figure 3 Distribution of attribute values from the selected dataset 

 

Evaluation Metrics 

This work used  NASA dataset namely CM1. In order to classify the software module as defect or no 

defect using naïve bayes, simple logistics and Zero R classifier are applied and their performance is compared 

using the following metrics. 

 

Table 3: The confusion matrix for the software defect prediction is depicted in the following table 3. 

Module actually has defects 

No (P) Yes (N) 

Classifier predicts no defects No 

(P)  

a 

(TP) 

b 

(FP) 

Classifier predicts some defects Yes  

(N) 

C 

(FN) 

d 

(TN) 

 

TP = true positives: number of examples predicted positive that are actually positive 

FP = false positives: number of examples predicted positive that are actually negative  

TN = true negatives: number of examples predicted negative that are actually negative  

FN = false negatives: number of examples predicted negative that are actually positive 
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Precision = 
dc

d


= 

fptp

tp


(21)

 

F –Measure           = 2 *
recallecision
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                                         (22)
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Root relative squared error = 
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Where, 

 Actual target values: a1 a2 … an 

 Predicted target values: p1 p2 … pn 

 Mean value of actual target values: a  

 

 

Dataset Description 
This subsection describes the datasets used in this work. Four public data sets CM1, JM1, PC1 and 

KC1obtained from NASA MDP [1, 2] Repositorymade available by PROMISE [3]are used for evaluation of the 

proposed work. Each of these dataset consists of a set of features characterized by static code metrics, such as 

LOC counts, Halstead and McCabe complexity metrics. These features are characterizing objectively the 

software quality. The In McCabe metrics are a collection of four software metrics:Essential complexity, 

cyclomatic complexity, design complexity and Lines of Code.CM1 dataset consists of 498 instances, JM1 

consists of 10885, KC1 dataset consists o 2109 instances and PC1 contains 1109 instances. All the 4 dataset 

consists of 22 attributes. In the dataset 5 of the attributes are used for representing different lines of code 

measure, 3 attributes represents the McCabe metrics, 4 attributes refers to  Halstead measures, 8 attributes refers 

derived Halstead measures, a branch-count attribute, and 1 goal field attribute which is called as class which 

classifies the instance as presence or absence of defect. 

 

Table 4 shows the description of each attributes used in the four dataset of this research work.  

 

Table 4: Attribute Description of the four Dataset 

S.No Variables Description 

1  Loc McCabe's line count of code 

2 v(g) McCabe "cyclomatic complexity" 

3 ev(g) McCabe "essential complexity" 

4 iv(g) McCabe "design complexity" 

5 N Halstead total operators + operands 

6 V Halstead "volume" 

7 L Halstead "program length" 

8 D Halstead "difficulty" 

9 I Halstead "intelligence" 

10 E Halstead "effort" 

11 B Halstead  

12 T Halstead's time estimator 

13 lOCode Halstead's line count 

14 lOComment Halstead's count of lines of comments 

15 lOBlank Halstead's count of blank lines 

16 lOCodeAndComment  

17 uniq_Op unique operators 

18 uniq_Opnd unique operands 
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19 total_Op total operators 

20 total_Opnd total operands 

21 branchCount % of the flow graph 

 

22 Defects Yes/No module has/has not one or more                           

 

Performance of Naïve Bayes Classifier 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

The table 2 shows the performance of the classifier naïve bayes which holds 85.3% as correctly 

classified and 14.65% as incorrectly classified. The relative absolute error is 85% and the root relative squared 

error is 127.57%. The True positive rate and false positive rate is .91 and .67 respectively. The naïve bayes on 

the whole performs lowest while comparing the other two methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table 3 shows the performance of the classifier simple logistics which holds 89% as correctly 

classified and 10.8% as incorrectly classified as presence of software defect or not. The relative absolute error is 

205% and the root relative squared error is 145.57%. The True positive rate and false positive rate is .98 and 1 

respectively.  

 

 

 

Performance of Naïve Bayes Classifier 

Correctly classified 85.3414 

Incorrectly classified 14.6586 

Mean absolute error 0.1524 

Root mean squared error 0.38 

Relative absolute error  85.2218 % 

Root relative squared error 127.572  % 

TPR 
0.911 

FP rate 
0.673 

Precision 
0.925 

Recall 
0.911 

F measure 
0.918 

Performance of SL Classifier 

Correctly classified 89.1566 

Incorrectly classified 10.8434 

Mean absolute error 0.3682 

Root mean squared error 0.4327 

Relative absolute error  205.8763 % 

Root relative squared error 145.2821 % 

TPR 
0.989 

FP rate 
1 

Precision 
0.901 

Recall 
0.989 

F measure 
0.943 
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The table 4 shows the performance of the classifier Zero R which holds 90% as correctly classified and 

9.8% as incorrectly classified as presence of software defect or not. The relative absolute error is 100% and the 

root relative squared error is 100%. The True positive rate and false positive rate is 1 and 1 respectively.  

 

 

 
 

Figure 4 Software defect prediction analysis of three classifier based on correctly and incorrectly classified 

instances 

 

The figure 4 and 5shows that the performance of the ZeroR performs better than the remaining two 

classifiers by analyzing the correctly and incorrectly classified instances. 
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Figure 5 Performance comparisons of three classifiers 

 

Conclusion 
Predicting the software defect in advance is a very challenging problem. To overcome this and handle 

efficiently the data mining techniques greatly assist in finding it. This paper aims at developing the best 

classifier for predicting the software defect presence. The experimental result is done using the weka toolkit. 

The three classifiers namely naïve bayes, simple logistics and zero r are analyzed for determining the predicting 

process. The result shows that the performance of Zero R plays more accurately in predicting the presence of 

software defect. 
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