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Abstract: This paper investigates the most economical shape for a cylindrical can, considering both 

mathematical optimization and practical manufacturing constraints. We explore different strategies for cutting 

metal sheets to form the can's components, including rectangular, square, and hexagonal layouts. The 

mathematical derivations suggest that the optimal height-to-radius ratio (h/r) varies depending on the cutting 

technique and material efficiency. Real-world observations show deviations from purely theoretical predictions 

due to additional manufacturing considerations. The paper concludes by discussing the implications for can 

design in industrial applications. 
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1. Introduction 
The design of a can is a crucial problem in industrial packaging, affecting material efficiency, cost, and 

usability. This study examines how mathematical optimization techniques can determine the best shape of a can 

while considering waste reduction. Various studies suggest an optimal ℎ/𝑟 ratio of around 2, but real-world cans 

exhibit higher values. We explore different cutting strategies to understand this discrepancy. 

 
Fig 1: A right circular cylinder with height h and base radius r. 

 

Prior research has analyzed the shape of cylindrical containers from both theoretical and empirical 

perspectives. Studies on material minimization have traditionally assumed negligible waste, leading to an ℎ/𝑟 

ratio of approximately 2. However, practical constraints, such as manufacturing efficiency and material 

recycling, often lead to deviations from this ideal shape. This paper builds upon previous work by incorporating 

waste reduction strategies in disc cutting. 

 

2. Mathematical formulation 
A cylindrical can has a volume 𝑉 given by: 

𝑉 = 𝜋𝑟2ℎ 

To minimize the material used, we consider the total surface area, including the lateral surface and two 

circular ends: 

𝐴 = 2𝜋𝑟ℎ + 2𝜋𝑟2 
This equation represents the amount of material needed to construct the can. To find the most material-

efficient design for a fixed volume 𝑉, we set up an optimization problem where the surface area 𝐴 is minimized 

subject to the volume constraint. Using the method of Lagrange multipliers or substituting ℎ in terms of 𝑟 using 

the volume equation, we obtain a relation between ℎ and 𝑟. 

Solving this optimization problem, we find that without considering material waste (i.e., assuming 

perfect usage of raw materials), the optimal ratio of height to radius is: 
ℎ

𝑟
= 2 

This means that the most efficient can, in terms of surface area to volume, is one where the height is 

twice the radius. However, when practical manufacturing constraints are taken into account—such as different 

cutting strategies, material wastage, and standard sheet sizes—this optimal ratio may shift. In real-world 

production, adjustments are made to balance material efficiency with production feasibility and cost. 
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Example: Suppose we want to design a can that holds exactly 1 liter of liquid (i.e., 𝑉 = 1000𝑐𝑚3). 

What are the dimensions of the can that use the least material? 

Step 1: Use the volume formula to express ℎ in terms of 𝑟: 

𝑉 = 𝜋𝑟2ℎ = 1000 ⇒ ℎ =
1000

𝜋𝑟2
 

Step 2: Substitute ℎ into the surface area formula: 

𝐴 𝑟 = 2𝜋𝑟ℎ + 2𝜋𝑟2 = 2𝜋𝑟.
1000

𝜋𝑟2
+ 2𝜋𝑟2 =

2000

𝑟
+ 2𝜋𝑟2 

Step 3: Minimize 𝐴(𝑟) by taking the derivative and solving 𝐴′ 𝑟 = 0, leading to the optimal value 
ℎ

𝑟
= 2. 

Result: 

𝑟 ≈ 5.42 𝑐𝑚,   ℎ = 2𝑟 ≈ 10.84 𝑐𝑚 

So, the can with radius ≈  5.42 𝑐𝑚 and height ≈  10.84 𝑐𝑚 will use the least amount of material for a 

volume of 1 liter. 

 
Fig 2: Surface area vs radius for fixed volume (V = 1000 cm3) 

 

 
Fig 3: Optimal cylinder in terms of material usage with V = 1000 cm3 

 

3. Cutting Strategies and Optimization 
Geometric optimization in design not only aims to minimize the material used for the cylindrical wall but 

also must consider how the top and bottom discs are cut from flat sheets. Different cutting strategies result in 

different levels of material waste, which in turn affects the optimal height-to-radius ratio (ℎ/𝑟) of the cylinder. 

 

3.1. Square Cutting 

In this method, the two circular discs are cut from square sheets. The minimum square that can enclose a 

circle of radius 𝑟 has an area of  2𝑟 2 = 4𝑟2, while the circle’s area is 𝜋𝑟2. Therefore, the material utilization 

rate is: 
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𝜋𝑟2

4𝑟2
=

𝜋

4
≈ 0.785 

 

This means approximately 21.5% of the material is wasted for each disc. Taking this waste into account 

when optimizing volume and material cost, the ideal height-to-radius ratio increases from the theoretical value 

(when waste is ignored) of 1, to approximately: 
ℎ

𝑟
≈ 1.219 

 

In other words, the height must be increased relative to the radius to compensate for the extra material 

loss in the disc cuts. 

 
Fig 4: Discs cut from squares 

 

3.2. Hexagonal Cutting 

Cutting from regular hexagons is a more efficient approach. A circle inscribed within a regular hexagon 

utilizes space more effectively. The area of a regular hexagon with side length a is: 

𝐴ℎ𝑒𝑥 =
3 3

2
𝑎2 

With 𝑎 = 𝑟, the hexagon’s area becomes 
3 3

2
𝑟2 ≈ 2.598𝑟2, resulting in a material utilization ratio of: 

𝜋𝑟2

2.598𝑟2
=

𝜋

2.598
≈ 1.209 

This lower waste level leads to a better ℎ/𝑟 ratio. In this case, the optimal ratio reduces to around: 
ℎ

𝑟
≈ 1.047 

Because less material is wasted on the top and bottom discs, there’s less need to compensate by 

increasing the height. 

 
Fig 5: Discs cut from hexagons 

 

3.3. Real-World Adjustments 

In practice, the ideal geometric design is often adjusted due to various constraints: 

 Oversized lids: To facilitate sealing or meet packaging standards, lids are often designed slightly larger 

than the theoretical radius, which increases the h/r ratio. 

 Manufacturing constraints: Welding, bending, CNC cutting methods, or sheet thickness all affect 

design. For example, with thicker materials, the height may be reduced to maintain structural stability or 

lower welding costs. 

 Assembly and transportation: Tall cylinders are more prone to deformation and are harder to stack or 

transport. Therefore, manufacturers may choose a lower h/r ratio for better handling and logistics. 

 

Thus, while the theoretical optimum serves as a useful guideline, real-world design often deviates from it 

to accommodate technological and economic factors. 
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4. Experimental Validation 
To verify the validity of the theoretical models, we conducted an empirical analysis of a variety of 

commercial cans commonly found in supermarkets. Measurements were taken of the height (h) and radius (r) of 

each can, from which the height-to-radius ratio (h/r) was calculated and compared to our earlier theoretical 

predictions. 

 

4.1. Measurement Procedure 

A sample of over 30 cylindrical cans was collected from different product categories, including 

beverages, canned food, sauces, and powdered milk containers. For each can, the height and diameter (2r) were 

measured using a digital caliper with a precision of ±0.1 mm. The values were then processed to obtain the h/r 

ratios for statistical comparison. 

 

4.2. Observed h/r Ratios 

Our analysis shows that most commercial cans have height-to-radius ratios ranging from approximately 

2.2 to 3.8. This range significantly deviates from the ideal theoretical ratio of h/r = 1, which minimizes surface 

area for a given volume. However, it aligns with the adjusted ratios when real-world constraints such as sealing, 

branding, and shelf visibility are considered. 

Product type Average h/r 

Soft drinks ≈ 2.5 

Canned vegetables ≈ 2.8 

Condensed milk ≈ 2.2 

Powdered milk cans ≈ 3.5 

Energy drinks ≈ 3.8 

 

4.3. Interpretation 

The higher h/r ratios observed in real products confirm that manufacturers prioritize other practical 

considerations over pure material efficiency: 

 Branding and shelf presence: Taller cans provide more vertical space for logos and nutritional 

information. 

 Stacking and storage: Taller, slimmer cans are easier to pack in cartons and store efficiently in 

supermarket shelves. 

 Consumer perception: Some studies suggest that taller packaging is associated with greater perceived 

value, which may influence product design. 

 Production line constraints: Machines designed for filling and sealing often work optimally with 

standard can dimensions, which may not align with the optimal h/r ratio from a material standpoint. 

 

The experimental results support our theoretical framework. While the mathematically optimal h/r ratio 

is rarely applied in practice due to various constraints, the actual ratios found in commercial products are 

consistent with the expected deviations discussed in Section 3. This validates the importance of balancing 

geometric efficiency with manufacturing and marketing realities. 

The bar chart below illustrates the average h/r ratios of commercial cans across different product 

categories. The chart highlights the clear differences between product types, reflecting the influence of 

functional requirements and practical design considerations on packaging shapes. 

 
Fig 6: Average h/r ratios of Commercial cans by product type 
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5. Discussion 
Our findings indicate that while theoretical optimization models provide a valuable foundation for 

geometric design and material efficiency, their practical implementation requires consideration of various 

additional factors. Industrial manufacturing constraints - such as standardized dimensions, fabrication costs, ease 

of assembly, packaging, and transportation - all significantly influence the final product design. 

Moreover, consumer psychology and marketing strategies also play a crucial role. For instance, tall and 

slim packaging designs are often preferred to create a perception of higher volume, while can dimensions are 

typically chosen to match existing packaging machinery. 

Future research could explore alternative material cutting patterns, such as nesting layouts, honeycomb 

structures, or non-standard geometric configurations, which may improve material utilization. In addition, the 

application of automated optimization techniques, including evolutionary algorithms, swarm optimization, or 

machine learning approaches, could efficiently identify optimal designs within complex design spaces under 

multiple real-world constraints. 

The integration of theoretical modeling, experimental data, and advanced optimization technologies 

promises to open new avenues in geometric design for the packaging and manufacturing industries. 

 

6. Conclusion 
This study bridges the gap between theoretical and practical aspects of can design. We demonstrate that 

material efficiency significantly depends on cutting strategies and manufacturing constraints. Optimizing can 

design requires balancing mathematical precision with real-world feasibility. 
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