
International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 10 – Issue 03 || March 2025 || PP. 28-31

www.ijlemr.com 28 | Page

Integration of Webassembly for High-Performance Web

Applications

Garifullin Rinat
1

1
Saint Petersburg Electrotechnical University «LETI», Russia

Abstract: This article explores the potential of using WebAssembly for performing computationally intensive

tasks in web applications. The architecture of WebAssembly is studied, focusing on its features such as the

binary format, low-level access to hardware resources, and support for high-performance operations. Practical

applications of WebAssembly are examined, including its use in graphic processing, machine learning, and

scientific computations, as well as its impact on reducing server load and utilizing client device resources.

Special attention is given to the limitations of the technology and its prospects for further development.

Keywords: WebAssembly, computationally intensive tasks, web applications, performance, graphic

processing, machine learning (ML), load reduction, client devices.

I. INTRODUCTION
Contemporary web applications are becoming more and more complex and resource-intensive. Real-time

data processing and computational tasks such as machine learning (ML) and 3D rendering place significant

demands on servers and require substantial computational resources. With the growing number of users and the

exponential increase in data volumes, servers frequently encounter performance bottlenecks, resulting in slower

application response times and higher operational costs.

One approach to addressing these problems is the redistribution of computational tasks from the server to

the client side. WebAssembly serves as an efficient tool for leveraging the computational power of end-user

devices, such as desktop computers, laptops, and smartphones. This low-level binary format delivers near-native

performance and enables the execution of resource-intensive tasks directly within the web browser. The

objective of this article is to explore the potential of WebAssembly for handling computationally intensive tasks

in the browser.

II. THE ROLE OF WEBASSEMBLY IN WEB APPLICATIONS
WebAssembly is a low-level binary format that runs high-performance code in web browsers. It was

designed to solve some of the fundamental problems in traditional web development technologies: poor

performance and efficiency, mainly due to JavaScript. WebAssembly lets developers write code in several

languages, such as C, C++, Rust, and more, compile it into a compact binary format, and execute it in browsers

at full speed. It opens completely new perspectives for complicated and high-speed web applications that could

compete with native ones.

WebAssembly is core to modern web technology that allows heavy computation to be executed directly

on the client side. This further enhances user experience by reducing server-side loads and accelerating

applications. Among the biggest tasks WebAssembly tries to solve is removing the performance bottlenecks

imposed by JavaScript and other extending web application capabilities by including high-performance code.

Whereas web applications keep growing in their level of sophistication, process large heaps of data, and grow

ever more interactive, traditional solutions face many serious challenges (table 1).

Table 1. Modern constraints in web development [1,2]

Challenge Description

Performance Modern applications require executing complex tasks such as image

processing, ML, 3D rendering, and data analysis, which traditional

technologies like JavaScript struggle to handle efficiently.

Load optimization Web applications often rely on servers for resource-intensive computations,

leading to increased latency, higher server costs, and scalability risks.

Utilization of client resources Modern devices such as smartphones, laptops, and desktops have significant

computational power, which often remains underutilized in web

applications.

Flexibility and cross-platform

compatibility

Creating applications that efficiently work across various devices and

platforms remains a challenging task for developers.

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 10 – Issue 03 || March 2025 || PP. 28-31

www.ijlemr.com 29 | Page

WebAssembly offers unique capabilities for addressing these challenges. Its architecture, based on a

compact binary format, significantly reduces application loading times while delivering performance

comparable to native applications. WebAssembly supports seamless integration with JavaScript, making it

highly practical for use in existing web applications. The technology provides access to device hardware

capabilities, including multithreading and SIMD (Single Instruction, Multiple Data). With its isolated execution

environment (sandbox), WebAssembly provides a high level of security, minimizing the risks associated with

executing malicious code.

WebAssembly is emerging as an important tool for developing modern web applications, offering

solutions to challenges that were previously unattainable within the web ecosystem. This technology empowers

developers to create more efficient, interactive, and secure applications capable of running on all modern

devices. Amid growing demand for high-quality web applications, WebAssembly becomes an interesting tool in

forming the future of web development.

III. THE TECHNICAL POTENTIAL OF WEBASSEMBLY FOR COMPUTATIONALLY

INTENSIVE TASKS
WebAssembly is a binary format that enables the execution of high-performance code within web

browsers. Designed for tasks requiring significant computational resources, it maintains security, compactness,

and cross-platform compatibility. The architectural features of WebAssembly make it an ideal tool for

implementing computationally intensive processes in web applications.

One of the most distinctive features of WebAssembly is its strongly typed binary format, which ensures

minimal overhead during code execution. Unlike JavaScript’s textual format, WebAssembly’s compact nature

reduces network load and expedites browser-based execution. This enables faster loading and better runtime

stability for applications, particularly those requiring significant computational resources. WebAssembly’s

support for multithreading and SIMD extends its capability to fully utilize the hardware potential of modern

client devices [3].

The true strength of WebAssembly lies in its ability to manage memory efficiently. Its architecture is

designed to allocate and process data in a way that optimizes performance, making it well-suited for tasks like

3D rendering, real-time simulations, and advanced data processing. WebAssembly’s memory model allows for

effective management of large datasets, which is essential in scientific computing and modeling. Tasks that were

previously confined to server-side execution or specialized software can now be efficiently handled within the

browser. WebAssembly has become an indispensable tool for scientific computations and modelling, where

large-scale complex mathematical operations are required [4].

Another significant application of WebAssembly is in ML. Libraries such as TensorFlow.js leverage the

capabilities of this format to accelerate neural network operations and data analysis. This enables the seamless

integration of ML into web applications without requiring data to be transmitted to a server for processing.

Despite its multiple advantages, WebAssembly also has certain limitations. Interaction with the DOM

structure is mediated through JavaScript, which can introduce additional latency in interface operations.

Debugging and profiling WebAssembly are more complex than similar processes for JavaScript, necessitating

the use of specialized tools. Constraints in multithreading and the lack of native access to system resources

present additional challenges that require further development and refinement. According to 2020 research [5],

the use of WebAssembly for executing JavaScript applications in IoT environments improves performance by

39,81% by reducing task execution time. Experiments have also demonstrated that WebAssembly decreases the

energy consumption of IoT devices by 39,86%, while providing a slight improvement in memory efficiency

compared to JavaScript.

Despite these problems, the development of WebAssembly is progressing rapidly. Extensions such as

WASI (WebAssembly System Interface) provide access to the file system, multithreading, and other system

resources, making this tool even more powerful. With the growing interest in virtual reality, big data processing,

and artificial intelligence integration, WebAssembly is becoming increasingly indispensable.

WebAssembly offers unique capabilities for executing computationally intensive tasks directly in the

browser. Its high performance, cross-platform compatibility, and seamless integration with JavaScript make it

an essential tool for modern developers. As technology continues to evolve, WebAssembly is poised to become

a cornerstone in the creation of high-performance web applications capable of tackling even the most complex

challenges.

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 10 – Issue 03 || March 2025 || PP. 28-31

www.ijlemr.com 30 | Page

IV. PRACTICAL APPLICATIONS: ENHANCING PERFORMANCE AND OPTIMIZING

LOAD
WebAssembly offers new opportunities for optimizing the performance of web applications and reducing

server load by redistributing computational tasks. Its implementation in practical scenarios has demonstrated

significant improvements in both data processing speed and overall user experience.

One of the key strategies for load optimization is the offloading of resource-intensive computations from

the server to client-side devices. This approach reduces the cost of server infrastructure and ensures better

scalability for applications. In real-time data processing tasks such as audio and video encoding, WebAssembly

enables these processes to be executed locally, minimizing latency and reducing the volume of data transmitted.

Thanks to the high performance of WebAssembly, applications become more responsive, which is particularly

important for interactive solutions such as content management systems, advanced editors, and multimedia

platforms. Applications for 3D modeling and animation that utilize WebAssembly ensure smooth operation

even on devices with limited resources.

In practice, WebAssembly has been successfully applied across various industries. According to the 2023

report [6], more than half of global professionals utilize this tool for web applications, but WebAssembly is also

being adopted across a wide range of fields (fig. 1).

Figure 1. WebAssembly usage across different domains in 2023, %

In medicine, for instance, WebAssembly is used for visualizing medical images directly in the browser,

enabling physicians to quickly and efficiently analyze diagnostic results without the need for specialized

software installation [7]. In educational platforms, WebAssembly facilitates the creation of virtual laboratories,

allowing users to perform complex simulations and experiments in real time.

In the e-commerce sector, WebAssembly accelerates data processing for interface personalization, user

behavior analysis, and the generation of dynamic offers [8]. These enhancements can improve application

performance and increase customer satisfaction, encouraging repeat purchases.

Despite its advantages, integrating WebAssembly into existing web applications requires a careful

approach. Developers must consider technical factors, such as browser compatibility and code efficiency, and

security concerns. WebAssembly’s sandboxing mechanism ensures the isolation of executed code, minimizing

risks for users. Proper configuration of interactions between WebAssembly, JavaScript, and other web

technologies remains a major factor for successful implementation.

Performance optimization with WebAssembly also involves the use of tools such as profilers and

compilers, which help reduce code loading and execution times. Writing code with consideration for

WebAssembly's architectural characteristics allows developers to achieve maximum performance while

avoiding excessive overhead. As technology advances, WebAssembly continues to find new areas of

application. Virtual reality, augmented reality, big data processing, and cloud computing represent promising

domains where the full potential of WebAssembly can be realized [9]. Its integration with emerging standards

such as WebGPU expands its capabilities, making it an essential tool for building the next generation of web

applications.

WebAssembly has already established itself as an effective solution for optimizing performance and

reducing server load in modern web applications. Its practical applications span a wide range of tasks, from

scientific research to commercial solutions, delivering high performance, security, and convenience for end

users.

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com || Volume 10 – Issue 03 || March 2025 || PP. 28-31

www.ijlemr.com 31 | Page

V. CONCLUSION
WebAssembly represents an interesting solution for developing high-performance web applications,

providing developers with a powerful tool to execute complex computations directly within the browser. Its

architecture, optimized for low-level operations, enables efficient utilization of client-side resources, reducing

server load and enhancing user experience. While the technology still faces certain limitations, such as DOM

interaction and debugging challenges, the active development of extensions like WASI and the introduction of

new features promise to expand its applications to areas such as ML, scientific computing, and virtual reality.

WebAssembly opens new horizons for building robust and flexible web applications tailored to modern

demands for performance and efficiency.

REFERENCES
[1] I.A. Kuznetcov, Optimization of distributed systems for mobile applications: improving performance and

scalability, Innovative Science, 5-1, 2024, 52-57.

[2] J. Wen, Z. Chen, Y. Liu, Y. Lou, Y. Ma, G. Huang, X. Jin and X. Liu, An empirical study on challenges of

application development in serverless computing, Proceedings of the 29th ACM joint meeting on

European software engineering conference and symposium on the foundations of software engineering,

2021, 416-428.

[3] Y. Yan, T. Tu., L. Zhao, Y. Zhou and W. Wang, Understanding the performance of webassembly

applications, Proceedings of the 21st ACM Internet Measurement Conference, 2021, 533-549.

[4] M.N. Hoque and K.A. Harras, Webassembly for edge computing: Potential and challenges, IEEE

Communications Standards Magazine, 6(4), 2022, 68-73.

[5] F. Oliveira and J. Mattos, Analysis of WebAssembly as a Strategy to Improve JavaScript Performance on

IoT Environments, Anais Estendidos do SimpósioBrasileiro de Engenharia de Sistemas Computacionais,

2020, 133-138.

[6] The State of WebAssembly 2023 Report. Data & SlashData. 2023. 25 p.

[7] S. Jodogne, Rendering Medical Images using WebAssembly, BIOIMAGING, 2022, 43-51.

[8] S. Heil, J.I. Haas and M. Gaedke, Enhancing Web Applications with Dynamic Code Migration

Capabilities, International Conference on Web Engineering, 2023, 371-375.

[9] B.B. Khomtchouk, WebAssembly enables low latency interoperable augmented and virtual reality

software, arXiv preprint arXiv:2110.07128, 2021.

