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Abstract: With the increasing scale of computing systems and the growing complexity of modern processor 

architectures, the importance of in-field testing mechanisms continues to rise. Traditional scan methods and 

automatic test pattern generation (ATPG) are often too resource-intensive or ineffective when adapting to long 

test programs and out-of-order execution cores. This study proposes an automated Software-Based Self-Testing 

(SBST) method for RISC-V cores based on reinforcement learning (RL). The key contribution lies in the use of 

toggle coverage as a proxy metric, significantly reducing computational overhead during RL agent training 

while maintaining a high level of stuck-at fault detection. Experimental results on synthesized RISC-V cores 

(both in-order and out-of-order) demonstrate that the proposed RL-SBST approach achieves over 90% stuck-at 

fault coverage with relatively short test programs (approximately 200 instructions), significantly outperforming 

random strategies and RISCV-DV-based techniques (an automated test generation method that combines 

features of the RISC-V architecture with dynamic fault dependency models for optimized and efficient defect 

coverage). This study highlights the potential for integrating RL algorithms and proxy metrics to optimize in-

field testing of computing devices without requiring significant hardware modifications or increasing system 

downtime. The findings are relevant to researchers and practitioners in microelectronics, automated testing, and 

fault modeling. 
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Literature Survey 
Modern computing systems are increasingly affected by the occurrence of faults during post-deployment 

operation. According to recent reports, major IT companies such as Meta and Google encounter a low but 

significant failure rate of processor cores in their server farms, which can lead to silent data corruption (SDC) 

and, consequently, unpredictable consequences for critical applications [4]. The emergence of such faults is 

attributed to the increasing complexity of processor microarchitectures and the growing limitations of 

nanometer-scale manufacturing—smaller transistors are more prone to degradation. Factory-level testing does 

not always fully eliminate the risk of permanent (e.g., stuck-at) and recurring defects that may manifest during 

operation [1]. 

Given that, in addition to transient faults (soft errors), permanent faults are becoming a critical concern, 

particularly in large-scale systems, the demand for effective real-time diagnostic solutions is increasing. 

Traditional scan chain methods using external automatic test equipment (ATE) are too resource-intensive for in-

field testing, as they require halting the core's operation, accessing the scan chain, and significantly increasing 

system downtime. In contrast, software-based self-testing (SBST) enables diagnostics "at speed" without costly 

hardware intervention by generating test instruction sequences executed directly by the target processor. 

However, the challenge of automatically generating such programs with high fault coverage while maintaining a 

reasonable test length remains unresolved [1]. 

Thus, the comprehensive problem of detecting hardware faults in the field for modern processor cores 

remains only partially addressed and requires further investigation. 

J. Seo and H. Cho [1] propose a method in which reinforcement learning algorithms are used to generate 

effective instruction sequences for SBST of processor cores. In the same paradigm, C. Y. Chen and J. L. Huang 

[2] formulate the hypothesis that reinforcement learning can enhance test coverage efficiency by optimizing 

command sequences, while N. Pfeifer et al. [9] demonstrate the application of this approach for targeted 

verification test generation for shared memory resources, indicating a methodological shift from static testing 

schemes to dynamic, self-learning systems. 

Zhang Y. et al. [3] describe a method for generating SBST using bounded model checking (BMC), 

focusing for the first time on non-functional superscalar processors (OOE). Zhang Y. et al. [7] introduce a 

temperature-aware approach that considers the impact of high temperatures on detected faults, addressing a 

research gap related to the insufficient evaluation of thermal effects in traditional testing schemes. 

Deligiannis N. I. et al. [6] propose an automated approach based on solving MaxSAT problems for 

generating programs that facilitate repeatable and consistent switching activity, significantly increasing the 
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likelihood of detecting stuck-at faults. In addition, Deligiannis N. I., Cantoro R., and Reorda M. S. [8] 

demonstrate the application of evolutionary algorithms to optimize the distribution of switching activity across 

different processor core modules, which not only enhances testing efficiency but also enables a detailed 

examination of error distribution patterns within the system. 

Kochte M. A. and Wunderlich H. J. [10] emphasize the development of comprehensive self-diagnostic 

systems capable of responding to dynamic functional changes, which they consider a key element in improving 

the reliability of modern microprocessor systems. 

Dixit H. D. et al. [4] investigate the phenomenon of silent data corruption in large-scale systems, 

highlighting an existing research gap in accounting for the exponential growth of computing systems and its 

impact on test accuracy. Similarly, Hochschild P. H. et al. [5] examine the issue of insufficient test coverage for 

processor cores, where undetected faults may persist, necessitating a reassessment of traditional testing 

approaches amid increasing system complexity. 

The research gap lies in the unresolved issue of automating SBST program generation. Despite the active 

use of Bounded Model Checking(BMC), RL, and evolutionary algorithms, there is still no unified approach 

capable of scaling to large cores while achieving high fault coverage without excessive computational overhead. 

The objective of the study is to explore the optimization of semiconductor testing by leveraging fault 

activation models for efficient fault coverage. 

The scientific novelty lies in the extensive review and analysis of optimization strategies for 

semiconductor testing using fault activation models. Based on the conducted analysis, recommendations have 

been formulated for the optimal application of these models. 

The hypothesis suggests that using toggle coverage as a proxy metric in reinforcement learning can 

achieve comparably high (or even higher) levels of stuck-at fault detection compared to direct yet 

computationally expensive stuck-at fault coverage calculation. 

The methodology is based on a comparative analysis of scientific publications. 

 

Research Methods 
Effective testing of digital devices requires that the maximum possible number of circuit nodes be 

activated, meaning they switch between different states, and that the results of such activation are captured at the 

outputs. Traditionally, test design follows two principles [1]: 

Fault activation: generating a set of input vectors that cause the target circuit node to assume an 

erroneous value if faulty (e.g., stuck-at-0 or stuck-at-1, shorted to a neighboring signal, etc.). 

Propagation to output: ensuring that an error occurring in an internal node is reflected in the final 

observable architectural state, such as a general-purpose register in a processor or memory. 

For simple combinational circuits, formal methods such as automatic test pattern generation (ATPG) 

have long been used. However, for complex microprocessors with multi-stage pipelined and/or superscalar 

architectures, traditional ATPG faces challenges due to the exponential state growth. Consequently, software-

based self-testing (SBST) approaches are becoming increasingly relevant, as they can be applied to an 

operational device [1]. 

There are several primary fault models, each corresponding to a specific type of physical and 

technological defect (Fig. 1). 
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Fig.1. Fault models [1]. 

 

This study focuses primarily on stuck-at faults; however, certain aspects of the discussion, such as the 

switching activity mechanism, can be extrapolated to other types of defects as well [1, 3] (Table 1). 

 

Table 1. Main fault models and their brief description [1]. 

Fault Model Description Applicability 

Stuck-At Faults A node or line remains stuck at logical 0 

or 1 

Basic scenario (widely used in ATPG) 

Bridging Faults Short circuit between multiple lines Critical in high-density circuit layouts 

Transistor-Level 

Faults 

Transistor failure or degradation Requires detailed transistor-level analysis 

Delay Faults Violation of timing characteristics 

(signal propagation delay) 

Important for high-frequency pipelined 

systems 

Floating-

Gate/Floating 

Nodes 

Unstable inputs, where source-drain 

resistance may lead to unpredictable 

values 

Common in unstable manufacturing 

processes 
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Coupling Faults One line influencing another (crosstalk, 

parasitic interference) 

Critical for memory and densely packed 

logic arrays 

Supply Faults Unreliable power supply leading to 

incomplete logic levels 

Critical for low-power systems 

 

The stuck-at fault model is considered the most commonly used and relatively universal due to 

several reasons: 
1. Simplified formalization: Any line can be assumed to be either functioning correctly (changing from 0 

to 1 and back) or stuck. 

2. High correlation with real defects: Even in modern manufacturing processes, despite the increasing 

variety of faults, permanent failures (such as broken interconnects or transistor failures) often conform to 

the stuck-at model. 

3. Broad tool support: Automatic test pattern generators (ATPG) and most commercial simulators (e.g., 

Synopsys, Cadence, Siemens) are primarily designed for detecting stuck-at faults. 

 

However, an important aspect to consider is that not all stuck-at faults result in functional failures. If a 

fault is located in components such as branch prediction logic or auxiliary power management blocks, its impact 

may not be observable at the user instruction level [5]. In applied (field) testing, it is crucial to prioritize the 

evaluation of critical stuck-at faults that lead to incorrect architectural results and potential data integrity issues 

[4]. 

 

The following test coverage metrics are used: 

1. Stuck-At Fault Coverage: Measures the percentage of all possible stuck-at faults (typically considering 

both stuck-at-0 and stuck-at-1 at each node) that can be detected by a given set of test vectors or 

programs. This is calculated as a ratio, and for complex SoCs and processor modules, the number of such 

faults can reach hundreds of thousands or even millions [1]. 

2. Toggle Coverage as a Proxy Metric: Measures how many different nodes in the circuit have 

transitioned at least once from 0 to 1 and vice versa during test execution. The rationale is that if a node 

does not switch states, the presence of a stuck-at fault in that node is unlikely to be detected at the output. 

Therefore, increasing toggle coverage is expected to correlate with improved stuck-at fault detection. 

 

In the context of field testing, toggle coverage can be efficiently measured in a single gate-level 

simulation run, whereas a full stuck-at fault coverage evaluation requires separate simulations for each potential 

fault or computationally intensive algorithms. Using toggle coverage as a proxy metric thus provides significant 

computational savings, especially during algorithm training [2, 9]. 

 

Research Results: Optimization of semiconductor testing using RL-SBST for stuck-at fault 

models to improve fault coverage 
This section focuses on methods for optimizing semiconductor device testing based on the stuck-at fault 

model and the key proxy metric—toggle coverage. This approach is particularly relevant for complex RISC-V 

cores, where classical methods such as scan chains and ATPG are either too costly or impractical for field 

testing conditions [4]. 

As demonstrated in previous studies [1, 2, 4], a circuit node that has not transitioned between 0 and 1 

cannot be detected as being "stuck" in the opposite state. Conversely, if a node undergoes multiple logical 

transitions, the probability of revealing a fault stuck at a single level increases. A full evaluation of stuck-at fault 

coverage at each test generation step, particularly in real-time conditions, requires repeated simulations of all 

potential faults, making it computationally prohibitive [7]. 

To address this, several modern approaches use toggle coverage as a proxy for stuck-at fault coverage 

[2]. The main arguments supporting this choice include: 

● Accessibility: it can be measured in a single gate-level simulation run. 

● Scalability: even with a large circuit (many gate nodes), measuring toggle transitions in one run is 

computationally simpler than exhaustive fault enumeration. 

● Correlation with real defects: sufficient activation of internal nodes, particularly those involved in 

different execution paths and pipeline stages, increases the likelihood of detecting most functionally 

critical faults. 
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Reducing system downtime is a fundamental requirement in field testing. SBST (Software-Based Self-

Testing) addresses this challenge by executing test instructions directly on the target processor core without 

switching the chip into scan mode. The SBST strategy is based on the following principles: 

● Short test programs: instead of relying on hundreds of thousands of vector-based patterns used in scan 

testing, SBST solutions typically use fewer instructions while ensuring higher engagement of various 

functional blocks within the core. 

● Configurability: test programs can be adapted to specific architectures (in-order/out-of-order execution, 

pipeline depth, cache presence, etc.). 

● Minimal hardware overhead: only a small firmware component is required to execute the test and 

compare the results with a "golden" reference [1]. 

 

The main idea behind the RL-SBST (Reinforcement Learning for SBST) approach is to construct a 

training environment where the reward is based on the increase in the proportion of toggled nodes. At each step, 

the agent selects the next processor instruction and receives positive reinforcement if the number of newly 

toggled nodes increases [2]. 

Several studies utilize the Proximal Policy Optimization (PPO) algorithm due to its scalability in parallel 

environments [9]. Parallel simulation, such as multiple processor cores or a cluster of computing nodes, enables 

the generation of a statistically significant set of instructions within a reasonable time frame, bringing the 

agent’s policy closer to the optimal one while avoiding overfitting to limited scenarios [2]. 

Since a stuck-at fault cannot manifest unless the corresponding node switches states, an increase in 

toggle activity indirectly enhances the likelihood of fault detection. Up to a certain threshold, this correlation is 

strong, as confirmed by practical experiments: programs exhibiting high toggle coverage often show a 

noticeable improvement in stuck-at coverage. 

However, it is important to note that 100% toggle coverage does not equate to 100% stuck-at fault 

coverage. Some nodes may be inaccessible at the level of user instructions, or certain faults may be masked 

during program execution [7]. 

 

The RL-SBST method can be applied to various RISC-V architectures, including: 

● In-order (InO): a five-stage pipeline implementation (Fetch, Decode, Execute, Memory, Write-back). 

This relatively simple microarchitecture maintains a closer relationship between the instruction sequence 

at the ISA level and internal states. 

● Out-of-order (OoO): a more complex superscalar core capable of reordering instruction execution to 

improve performance [4]. This introduces a "gap" between the architectural state and microarchitectural 

nodes, requiring more refined control when generating test instructions [3]. 

 

For gate-level testing, a synthesized netlist of the RISC-V core is used, where each connection is tracked 

for toggling activity. The length of the test program is typically constrained (e.g., 200 instructions) to enable fast 

and repeated model simulation [2, 5]. 

To better illustrate the position of RL-SBST among existing methods, Table 2 summarizes the main 

approaches to generating test programs for stuck-at faults. 

 

Table 2. The main approaches to creating test programs for stuck-at faults. [1, 2, 7, 8]. 

Method Main Optimization 

Target 

Advantages Disadvantages 

Random Randomly selected 

instructions 

Easy to implement, requires 

minimal computational 

resources 

Low fault coverage, lacks targeted 

activation of specific blocks 

RISCV-DV Enhanced randomization 

of RISC-V instructions 

Uses heuristics to generate 

valid branches and addresses 

Limited improvement over pure 

randomness, may not achieve high 

stuck-at fault coverage 

Bounded 

Model 

Checking 

(BMC) 

Formal proof of 

activating required 

circuits 

High accuracy, theoretically 

complete coverage (for short 

tests) 

Exponential increase in 

computational complexity, 

impractical for long programs and 

complex OoO architectures 
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Evolutionary 

Algorithms 

Gradual optimization of 

the initial test sequence 

Relatively simple to 

implement, allows step-by-

step improvement in 

coverage 

Prone to local optima, solution 

quality heavily depends on the initial 

state 

RL-SBST Maximization of toggle 

coverage (proxy for 

stuck-at faults) 

High fault coverage, ability 

to account for internal circuit 

states, efficient 

parallelization 

Requires complex gate-level 

simulations, potential incomplete 

coverage of inactive blocks if no 

corresponding instructions exist 

 

The table illustrates that the RL-SBST approach provides a significant advantage, provided that gate-

level simulation of the entire core can be performed multiple times. Otherwise, when computational resources 

and time are limited, compromises must be made, such as reducing program length or lowering model accuracy. 

 

Comparison with existing methods 
This section presents the results of a practical evaluation of the proposed RL-SBST approach, comparing 

it with traditional test program generation methods (Random and RISCV-DV) in testing RISC-V processor 

cores. This experimental analysis clearly demonstrates the increase in toggle coverage and stuck-at fault 

detection as the test program length increases, highlighting the advantages of reinforcement learning [2, 3, 7]. 

Figure 2 illustrates the structure of the RL-SBST platform. It is based on gate-level simulation of the 

target processor core to capture the exact switching status. The current toggle coverage (TC) and the generated 

instruction sequence (IS) serve as the input state for the RL model. The RL model interprets changes in toggle 

coverage as a reward value. Throughout the training process, the deep neural network (DNN) model outputs 

action data for each step, prescribing a new instruction. Each instruction is then incorporated into the sequence 

and evaluated using gate-level simulation of the target core. To ensure reproducibility, the test program length is 

fixed. The total runtime for each model is limited to approximately 200,000 clock cycles, which is sufficient to 

execute the entire sequence considering the pipeline. 

 

 
Fig.2. General structure of the RL-SBST environment for generating SBST [1]. 
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As seen in Figure 2, RL-SBST generates a test program by adding one RISC-V instruction per RL step, 

with each new instruction becoming the next in the sequence. The RL model generates multiple probability 

distributions for five instruction components: type, three register identifiers, and an immediate value. For 

example, the generated instruction type is selected from a probability distribution covering 38 potential 

instruction types in RV32I [1]. 

For a small number of instructions (L≤50), all methods show relatively modest results (below 50–60% 

toggle coverage). However, as L increases to 200, RL-SBST surpasses 80%, while random generation rarely 

exceeds 50% [1,2]. 

For a complex OoO core, the overall toggle coverage is generally higher due to superscalar execution. 

However, the gap between methods remains: Random achieves approximately 70% at L=200, RISCV-DV 

slightly exceeds this value (by about +0.5–1%), while RL-SBST reaches 80–85% [7]. As noted by Dixit H. D. et 

al. [4], this is a crucial metric for testing given the complexity of the logic. 

Table 3 summarizes the aggregated results for stuck-at fault coverage at L=200. 

 

Table 3. Generalized results for stuck-at fault coverage at L=200 [1, 6, 7, 8]. 

Method InO Core 

(approximately 13K 

nodes) 

OoO Core (approximately 

58K nodes) 

Comment 

Random ~75% ~70–73% Simple implementation, weak 

optimization 

RISCV-DV ~77–78% ~72–74% Uses heuristics for valid 

transitions but does not consider 

microarchitectural information 

RL-SBST ~85% >90% Adapts to specific nodes, 

generating instructions that 

increase their switching 

BMC (2-3 

cycles) 

Can achieve very high 

local coverage but is 

not applicable for 

long tests 

Does not scale for long 

programs or complex cores 

Exponential growth in 

computational complexity 

 
As shown in Table 3, RL-SBST outperforms randomly generated test programs in terms of stuck-at 

coverage, particularly in complex scenarios. While formal methods (such as BMC) provide high accuracy, they 

are not suitable for long tests due to state explosion. In general, 80–90% toggle coverage is usually comparable 

to 70–85% stuck-at coverage [2]. Adding more instructions (beyond 200) can further increase coverage, but it 

introduces the issue of prolonged test time, especially in parallel RL training. 

Future advancements in processor and semiconductor device testing should focus on hybrid strategies 

that combine reinforcement learning with more detailed fault models. In particular, the integration of stall 

models (hang or stall phenomena in faults) can help identify the most vulnerable points in the circuit, where 

traditional stuck-at models do not capture all possible failure scenarios. Incorporating such stall models into RL 

training would enable the generation of instructions targeting not only classic stuck-at faults but also states 

where logical elements or pipeline stages "hang" in an incorrect execution mode. This would enhance 

confidence in the system’s reliability under unusual or extreme conditions. 

 

The following recommendations can be proposed: 

● Expansion of fault models: In addition to stuck-at and stall models, it is necessary to consider transition 

faults and bridging faults. 

● Hybrid test planning: Using ATPG can optimize stall fault models, improving fault tolerance in sub-

5nm semiconductor designs. 

● Implement distributed learning with hardware-in-the-loop support (FPGA-in-the-loop) to accelerate data 

collection on toggle coverage and speed up RL model training. 
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● Develop a mechanism for rapid RL-agent configuration for different RISC-V variants or other ISAs, 

using meta-parameters that generalize and transfer knowledge about the most "problematic" node types 

and faults between models. 

Conclusion 
The article examines methodological aspects of testing RISC-V processor cores in field conditions, 

where it is crucial to balance fault coverage and testing costs. The RL-SBST approach is proposed, combining 

reinforcement learning and the toggle coverage metric as a proxy for stuck-at fault coverage. 

A high level of stuck-at fault coverage (over 90% on the OoO core) has been achieved with a test length 

of approximately 200 instructions, surpassing random methods and RISCV-DV. 

A correlation has been established between the increase in toggle coverage and stuck-at fault coverage, 

confirming the feasibility of using switching activity to reduce computational costs during RL agent training. 

The RL-SBST approach enables the generation of short but effective SBST programs applicable in 

systems where testing must be performed without complex interventions, such as scan-based methods. 

Thus, the proposed method demonstrates the effectiveness of applying machine learning for targeted 

coverage of potentially problematic nodes while utilizing a proxy metric to reduce costs compared to traditional 

direct computation of stuck-at fault coverage. 
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