
International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com ǁ Volume 1 - Issue 8 ǁ September 2016 ǁ PP. 29-35

www.ijlemr.com 29 | Page

Exploring the Computational Capabilities of Object Oriented

Programming Languages

1
Onu Fergus U.,

2
Asogwa Samuel C.

1
Computer Science Department, Ebonyi State University, Abakaliki – Nigeria

2
Computer Science Department, Michael Okpara University of Agriculture, Umudike- Nigeria

Corespondence author: uche.fergus@gmail.com

Abstract: The real reason for the deployment of computers into the activities of man is to ease computational

burdens especially complex computations. This ability to carry out complex computations by computers is built

into them through software systems. Most modern software systems are developed with object oriented

programming (OOP) Languages and tools. This paper takes an explorative look into the features of object

oriented programming languages (OOPLs) in order to discover and expose their complex computational

potentials. We state that the computational capabilities of OOPLs come from their in-built features such as data

abstraction, polymorphism, encapsulation and inheritance. The paper used sample codes for handling complex

computational problems in two OOPLs namely java and C++ to demonstrate these computational capabilities. It

was discovered that these capabilities were also applied in the implementation of several software

systems/applications in artificial intelligence (fuzzy logic, knowledge representation models etc), complex

technical computations and in building interactive communities of computationally augmented objects.

Keywords: Complex Computation, Software Systems, Object Oriented Programming Languages, Data

Encapsulation, Knowledge Representation

I. Introduction
Programming is a process of writing instructions to the computer hardware with the intension of

solving human and societal problems. There are several approaches to writing computer programmes. These

approaches as established by the various computer language vendors are called, programming languages. A

programming language is the language the computer understands, obeys and, through which computer

instructions are written. When a computer instruction is written in a logical pattern understandable by the

computer it is called a computer program. When several of these programs that solve problems are combined as

a unit we call it software or an application. It is these programmes and the applications/softwares that drives or

controls the hardware. Software that solves specific tasks (computations) is called application software, while

those that control and manage the computer hardware are known as systems software or operating systems.

There is the need to understand the computational abilities inherent in programming languages. This work

concentrates in the exposition of object oriented programming (OOP). This paper will help the reader appreciate

the features of OOP and equally understand why OOP is suitable in certain programming style in implementing

mega programming projects.

II. Overview of Programming language Paradigms

Paradigm" (a Greek word meaning example) is commonly used to refer to a category of entities that

share a common characteristic.

We can distinguish between three different kinds of Software Paradigms:

 Programming Paradigm is a model of how programmers coomunicate an calculation to

computers

 Software Design Paradigm is a model for implementing a group of applications sharing

common properties

 Software Development Paradigm is often referred to as Software Engineering, may be seen

as a management model for implementing big software projects using engineering principles.

 Programming Paradigm

A Programming Paradigm is a model for a class of Programming Languages that share a set of

common characteristics. A paradigm is not a type of programming language. It is simply an approach to

programming that is suitable for solving problems through a programming language. Common programming

paradigms can be classified as, procedural (imperative), logic, object oriented, etc. [1, 6] Table 1. shows a brief

of the differences that exist among the programming paradigms

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com ǁ Volume 1 - Issue 8 ǁ September 2016 ǁ PP. 29-35

www.ijlemr.com 30 | Page

Fig. 1. Software Development Paradigm in Software life Cycle [1]

Table 1. Shows a brief of the differences that exist among the programming paradigms[2,3]

 Paradigm Features

1 Procedural Expresses the procedure to be followed to solve a task. Make use of

loops. Has side effect such as; functions modifying variables

2 Functional Makes use of recursive functions. However, it makes recursive calls and

changes the parameters of those calls.

3 Object Oriented

Programming (OOP)

Object-oriented programming views the world as a collection of objects

that have internal data and external means of accessing parts of that

data. The goal of object-oriented programming is to think about the

problem by dividing it into a collection of objects that provide services

that can be used to solve a particular problem. One of the main tenets of

object oriented programming is encapsulation -- that everything an

object will need should be inside the object. Object-oriented

programming also emphasizes reusability through inheritance and the

ability to extend current implementations without having to change a

great deal of code by using polymorphism.[2]. Objects interact by

means of message passing .Objects in classes are similar enough to

allow programming of the classes, as opposed to programming of the

individual objects. Classes are organized in inheritance hierarchies[3]

4 Logic Programming (i)Automatic proofs within artificial intelligence. (ii) Based on axioms,

inference and rules. (iii) program execution becomes a systematic search

in a set of facts, making use of a set of inference[3]

III. Computational Capabilities of OOP
The computational Capabilities of object oriented programming are best understood through their

characteristics. The major characteristics of object oriented programming are; (A) data abstraction, (B)

encapsulation, (C) Polymorphism and (D) Inheritance.

(A) Data Abstraction

 A class defines a new data type, use private instance variables to hide the choice of representation.

private declarations are only visible inside the class. Data abstraction provide sufficient public methods to the

outside world to play with the functionality of the object and to manipulate object data, i.e., state without

actually knowing how class has been implemented internally [4,7]

 Advantages of data abstraction are; (i) Client don’t need to know about representation. (ii) Localized

impact of changes. The disadvantages of data abstraction are; (i) More code to write and maintain (ii) Run-time

overhead (time to call method) [4]

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com ǁ Volume 1 - Issue 8 ǁ September 2016 ǁ PP. 29-35

www.ijlemr.com 31 | Page

Code example of data Abstraction in java

Fig 2. Implementation of StringSet [4]

(B) Polymorphism

Polymorphism is the ability of an object to take on many forms. The most common use of

polymorphism in OOP occurs when a parent class reference is used to refer to a child class object.

Any Java object that can pass more than one IS-A test is considered to be polymorphic. In Java, all Java objects

are polymorphic since any object will pass the IS-A test for their own type and for the class Object.

The only possible way to access an object is through a reference variable. Once declared, the type of a

reference variable cannot be changed. [5]

public interface Vegetarian{}

public class Animal{}

public class Deer extends Animal implements Vegetarian{}

Deer d = new Deer();

Animal a = d;

Vegetarian v = d;

Object o = d;

// All the reference variables d, a, v, o refer to the same Deer object in the heap.

Fig. 4 A Short Java code Example of Polymorphism [5]

(C) Data Encapsulation

 Encapsulation is an Object Oriented Programming concept that binds together the data and functions

that manipulate the data, and that keeps both safe from outside interference and misuse. Data encapsulation led

to the important OOP concept of data hiding. Data encapsulation is a mechanism of bundling the data, and the

functions that use them and data abstraction is a mechanism of exposing only the interfaces and hiding the

implementation details from the user. C++ supports the properties of encapsulation and data hiding through the

creation of userdefined types, called classes.

(i) Genuine Object Encapsulation

Researcher in [11] used encapsulation in the implementation of his genuine object oriented

programming (GOOP) - an integrated physical and computational construction kit in which children can use

new ―Things That Think‖ technology to build interactive communities of computationally augmented objects.

GOOP provides an environment for children to explore and expand their own ―Theories of Mind‖, allowing

them to construct powerful ideas about the nature of metaphor and shared understandings. He posits that, the

mechanism that drives a genuine object’s function can consist of both computational and physical (e.g., motors

and gears) elements. GOOP’s ability to encapsulate these multiple dimensions in a physical object is patterned

on OOP’s ability to encapsulate computational procedures and data in an easily accessible software object.

public class StringSet {

 // OVERVIEW: StringSets are unbounded, mutable sets of Strings.

 // A typical StringSet is {x1, ..., xn}

 // Representation:

 private Vector rep;

 public StringSet () {

 // EFFECTS: Initializes this to be empty: { }

 rep = new Vector ();

 }

 public void insert (String s) {

 // MODIFIES: this

 // EFFECTS: Adds s to the elements of this:

 // this_post = this_pre U { s }

 rep.add (s);

 }

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com ǁ Volume 1 - Issue 8 ǁ September 2016 ǁ PP. 29-35

www.ijlemr.com 32 | Page

Fig. 4 Data encapsulation implementation in C++. [7]

(D) Inheritance

Inheritance is a principle that allows you to apply your knowledge of a general category to more-

specific objects. In Java, inheritance is a mechanism that enables one class to inherit both the behavior and the

artributes of another class [8]

In OOP, we often organize classes in hierarchy to avoid duplication and reduce redundancy. The

classes in the lower hierarchy inherit all the variables (static attributes) and methods (dynamic behaviors) from

the higher hierarchies. A class in the lower hierarchy is called a subclass (or derived, child, extended class). A

class in the upper hierarchy is called a superclass (or base, parent class). By pulling out all the common

variables and methods into the superclasses, and leave the specialized variables and methods in the

subclasses, redundancy can be greatly reduced or eliminated as these common variables and methods do not

need to be repeated in all the subclasses. For example, A subclass inherits all the variables and methods from its

superclasses, including its immediate parent as well as all the ancestors. It is important to note that a subclass is

not a "subset" of a superclass. In contrast, subclass is a "superset" of a superclass. It is because a subclass

inherits all the variables and methods of the superclass; in addition, it extends the superclass by providing more

variables and methods. [9]

#include <iostream>

Using namespace std;

 Class Adder {

 Public;

 // Constructor

 Adder (int I = 0) {

 Total = I }

// interface to outside world

Void addNum (int number) {

Total += number; }

// interface to outside world

Int getTotal(){

Return total ;

};

Private

// hidden data from outside world

Int total;

};

Int main() {

Adder a;

a.addNum(10);

a.addNum(20);

a.addNum(30);

cout<< “Total <<a.getTotal()

<<endln;

return 0; }

Fig. 5 Inheritance; The Point2D and Point3D Classes [9]

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com ǁ Volume 1 - Issue 8 ǁ September 2016 ǁ PP. 29-35

www.ijlemr.com 33 | Page

Fig. 4 Illustrations of inheritance in OOP [9]

(E) Inheritance in Object-Oriented Knowledge Representation

Nowadays the design and development of knowledge-based systems for solving problems in different

domains are important tasks within area of artificial intelligence. Currently there are many different knowledge

representation models (KRM), the most famous of which are logical models, production models, semantic

networks, frames, scripts, conceptual graphs, ontologies, etc. All of these KRMs have their own specifics and

allow representing of some types of knowledge. However, the certain Programming paradigm should be chosen

for implementation of any particular KRM. For today the most famous and commonly used programming

paradigm is an object-oriented programming (OOP). It gives us an opportunity of efficient implementation of

many existing KRM.

 within fuzzy frames slots can contain fuzzy sets as values. Secondly, the inheritance through is-a slot can be

partial. Such extension of frames allows describing of objects and classes which have partial

properties, i.e. properties which inherent with some measure. It means that such properties are not strictly true or

false for the object or class. This kind of inheritance is called weaker inheritance. [10]

(F) OOP in Complex Technical Computing Applications

Object-oriented programming is a formal programming approach that combines data and associated

actions (methods) into logical structures (objects). This approach improves the ability to manage software

complexity—particularly important when developing and maintaining large applications and data structures.

The object-oriented programming capabilities of the MATLAB
®
 language enable you to develop complex

technical computing applications faster than with other languages, such as C++, C#, and Java
™

. You can define

classes and apply standard object-oriented design patterns in MATLAB that enable code reuse, inheritance,

encapsulation, and reference behavior without engaging in the low-level housekeeping tasks required by other

languages. Object-oriented programming in MATLAB involves using:

(i)Class definition files, enabling definition of properties, methods, and events

(ii)Classes with reference behavior, aiding the creation of data structures such as linked lists

(iii)Events and listeners, allowing the monitoring of object property changes and actions [12]

(G) Utility of Object-oriented Programming in Complex System Modeling

Researchers in [14] posit that with OOP, a complex system can be broken down into simple

independent components, called objects. Objects individually display simple behavior. Simulations are

configured at run-time by selecting appropriate objects. Complex system behavior is a result of message passing

(interac-tion) among objects. Object-oriented programming languages possess certain characteristics that enable

rapid prototyping of models with minimal software maintenance. The server prompts the user for objects to be

integrated (Figure 5). The user makes a selection, causing the server to send an initialization message to the

appropriate object. The receiving object interprets the initialization message and, if necessary, queries the user

for more information. For example, the user may ―tell‖ the server to simulate crop growth. The server then sends

an initialization message to Crop which, in turn, queries for the type of crop to be simulated

http://www.mathworks.com/products/matlab/

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com ǁ Volume 1 - Issue 8 ǁ September 2016 ǁ PP. 29-35

www.ijlemr.com 34 | Page

Fig 5. Message sending. A server object acts as a controller, integrating the selected objects to form the desired

simulation. The server initiates communication with the first tier of subclass objects which, in turn, send

messages to their subclass objects.[14]

(H) Parameterize Urban Design Codes With BIM and Object-oriented Programming

Researchers in [15] used OOP and building information modeling (BIM) to calculate the Floor Area

Ratio (F.A.R.), a ratio of the total floor area of the buildings to the property area. To obtain this value from the

parametric urban code model, two values were used; gross floor area and property area. The gross floor area can

be read from the building object and the property area can be read from the parcel object. Another example is

the maximum building footprint area. In general, a certain ratio of the property area is allowed for the building

footprint area. To do so, the property area and the allowed ratio need to be collected from the parcel object, and

it can be transferred to the building object. They also used complex datasets and tools such as geographic

information systems data modeling urban design codes to model open spaces, streets, buildings, definition of

parameter lists and code models

(I) Calculating Heading in 2D Games.

Trigonometric functions like sine (sin) and cosine (cos) are often used in game programming for a

number of tasks. For example, rotating a spaceship or determining horizontal and vertical velocity based upon

the angle the character/ball/missile is moving, moving a non-player-character in a more pleasing way than

simply left, right, up, down or diagonal (think about the deadly swooping of a Galaxians enemy). And what

about a ripple effect; perhaps an explosion or pebble-splash, starting from a centre point and radiating outwards

at an increasing radius.

The heading of two dimensional games can be calculated using trigonometric functions.

The programming languages and application programming interface (API’s) provides the complex math

wrapped up in a simple method/function call.

For example in Java can be used to write code to control the horizontal and vertical velocity of say a spaceship

to make sure it travelled in precisely the same direction that it was facing. See fig. 6

International Journal of Latest Engineering and Management Research (IJLEMR)

ISSN: 2455-4847

www.ijlemr.com ǁ Volume 1 - Issue 8 ǁ September 2016 ǁ PP. 29-35

www.ijlemr.com 35 | Page

Fig. 6. Java sample code that can control the vertical and horizontal velocity of object [16]

IV. Conclusion
In this paper, we have studied some of the computational capabilities of OOP and discovered that these

abilities are derived from their characteristic features such as data abstraction, polymorphism, encapsulation and

inheritance etc. In exploring the computational abilities of OOP we discovered that application of these features

are applied in artificial intelligence such as in knowledge representation models, fuzzy logic and in development

of complex scientific applications such as in modeling tolls. Etc. We have also given some useful code examples

and models that will be of great guide to the programmer.

Reference
[1.] Software Paradigms (Lesson 1): ―Introduction & Procedural Programming Paradigm‖

[2.] Eric Suh “The Tower of Babel -- A Comparison Programming Languages retrieved from:

http://www.cprogramming.com/langs.html

[3.] Overview of the four main programming paradigms. Retrieved from:

http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-

section.html

[4.] David Evans (2003) Lecture 5: ―Implementing Data Abstractions‖. Retrieved from

http://www.cs.virginia.edu/cs201j/lectures/lecture5.ppt

[5.] Polymorphism. Retrieved from; http://cecs.wright.edu/~tkprasad/courses/cs480/L3OOP.pdf

[6.] Onu F. U, Asogwa S. C and , Ugwoke F.N: ―comparative analysis of programming languages - a

study‖ IJCSIT, Vol. 3, Issue 4 (Aug, 2016)

[7.] Data Abstraction in C++. Retrieved from:

http://www.tutorialspoint.com/cplusplus/pdf/cpp_data_abstraction.pdf

[8.] Joyce Farrel. ―java programming, second edition thomson course technology 2003

[9.] Inheritance; retrieved from

http://www3.ntu.edu.sg/home/ehchua/programming/java/j3b_oopinheritancepolymorphism.html

[10.] Dmytro Terletskyi; ―Inheritance in Object-Oriented Knowledge Representation‖

arXiv:1510.04212v1[cs.AI] 14 Oct. 2015

[11.] Richard Daniel Borovoy: (1996) ―Genuine Object Oriented Programming‖ Massachusettes Institute of

Technology.

[12.] ―Exploring the computational capabilities of oop‖ Retrieved from;

http://www.mathworks.com/discovery/object-oriented- programming.html? requested

Domain=www.mathworks.com

[13.] Stuart McGarrity ―Introduction to Object-Oriented Programming in MATLAB‖. Retrieved from:

http://www.mathworks.com/company/newsletters/articles/introduction-to-object-oriented-

programming-in-matlab.html

[14.] William M. Clapham and Carol J. Crosby(1992) ―Utility of Object-oriented Programming in Complex

System Modeling‖ Mathl. Comput. Modelling Vol. 16, No. 617, pp. 45-50, 1992

[15.] Jong Bum KIM, Mark J. Clayton and Wei YAN ―Parameterize Urban Design Codes with BIM And

Object-Oriented Programming‖ Open Systems: Proceedings of the 18th International Conference on

Computer-Aided Architectural Design Research in Asia (CAADRIA 2013), 33–42.

[16.] ―Calculating Heading in 2D Games.‖ Retrieved from:

http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-

part-1/

// facingAngle can be any angle between 1 and 360 degrees
// the Math.toRadians method simply converts the more conventional
// degree measurements to radians which are required by the cos and

sin methods.
horizontalVelocity = speed * Math.cos(Math.toRadians(facingAngle));
verticalVelocity = speed * Math.sin(Math.toRadians(facingAngle));

http://www.mathworks.com/company/newsletters/articles/introduction-to-object-oriented-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/introduction-to-object-oriented-programming-in-matlab.html
http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-

