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Abstract: In this paper, the modifications of the traditional range equations are investigated by taking into 

consideration the atmospheric turbulence, and the beam spot radius at the transmitter. The combination of these 

two factors is shown to be a potentially contributors to the laser range evaluations. The results of received power 

at the detector surface area are compared in both cases with and without turbulence. Using the corrective factors 

for the laser range equation (LRE), the received red power shifts due to turbulence relative to the free space 

received power are calculated. These red shifts are shown for the first time to be a metric ruler for the direct 

range evaluation. A statistical approach for evaluating the cosine angle between the normal to the target surface 

relative with laser receiving axis ( cos  ) is made. 
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1. Introduction 

Laser rangefinder ( LRF ) is a device, which uses a laser pulse to determine the distance to an object. 

It is one of the first and successful applications of laser technology in the civilian and military applications [1]. 

In practice, there are many methods to measure distance using laser light, these methods are: interferometers, 

phase shift, triangulation, and time-of-flight measurements [2, 3]. All techniques are shared on the transmission 

of a short pulse of electromagnetic radiation towards certain diffused target and analysis of the back scattered 

signals from this target to determine the range. This technique   is called the time of flight  TOF  , which is the 

most used laser ranging technique.  The constant speed of light c  , and an accurate measurement of the time 

taken between transmitter and target  t  , the range R  can be measured on the bases of the relation 

/ 2R c t   [3-5]. Generally, the accuracy of laser range measurement is affected by a number of factors, 

including signal strength, noise in the electronics, and target reflectivity. By identifying and quantifying these 

factors, highly accurate range data of objects can be acquired [4, 5]. In addition to these internal effects, external 

effects are available such as rain, snow, sleet, fog, haze, pollution, etc., these atmospheric factors affect viewing 

of distant objects. The three primary atmospheric processes that affect optical wave propagation are absorption, 

scattering, and refractive-index fluctuations (atmospheric optical turbulence) [5]. Absorption and scattering by 

the constituent gases and particulates of the atmosphere give rise primarily to attenuation of the laser beam. 

Theories relating to atmospheric turbulence have been studied over many decades in order to better understand 

the impact of turbulence on the propagation of a laser beam through the atmosphere [5-7]. Index of refraction 

fluctuations lead to irradiance fluctuations, beam broadening, and loss of spatial coherence of the optical wave, 

among other effects. Clearly, these deleterious effects have far-reaching consequences on the use of lasers in 

optical communications, imaging, remote sensing, laser radar, and other applications that require the 

transmission of laser beams through the atmosphere. Nonetheless, the most serious optical effects on a 

propagating laser beam are generally those caused by small temperature variations that manifest themselves as 

index of refraction fluctuations [8].It should be mentioned that the laser range equations often produce 

unreliable predictions of the practical data, the primary reason for this inaccurate predictions is due to optical 

turbulence effects on the propagation beam [5].  

In this paper the effect of atmospheric turbulence, beam spot radius at transmitter is introduced into 

the traditional radiometric three range cases namely, total reflection of the laser beam, partial reflection and 

Gaussian beam for extracting new formulations for these range cases. Also the maximum distance between the 

laser ranging system and the target, for different values of visibility range are evaluated. Although the laser 

range equation without the corrective factor provides a reasonable prediction for weak atmospheric turbulence 

conditions, it is shown in the present work that it decreases in accuracy as the refractive structure parameter 

increases into the moderate and strong regimes at   a specific wavelength. The calculations are implemented by 

MATLAB software.   
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2. Laser Range Equations 
2.1 Total reflection 

For a point source transmitter , at the same place with receiver plane, the total reflected signal from a 

diffuse target is subjected to Lambert’s law ( beam spot radius is smaller than the target area) , the receiving 

power at detector is given by [ 1, 2 , 9 ,10,11 ]  

2
2

2

cos
( , )

8

t r t
D a

D P
P R

R

  
 

                                                (1) 

This is the near range equation, where DP
 
represents the power of reflected signal at detector  in( watt) , D  is 

the receiver diameter in  (m) ,   target reflectivity, t  and r  optical efficiency of transmitter and receiver 

respectively , υ is the angle between the transmitted beam line and the normal to the diffuse reflecting target, tP   

is the signal power at transmitter in (watt) , DA
 
is the detector area in( 

2m ) , 
2

a  
atmospheric transmittance 

factor in two ways laser propagation ( from transmitter to target and from target to receiver ) as a function of 

laser wavelength   and range R  which refers to the distance between the target and receiver system called 

“range” R  , and 
22 R  represents the laser beam area at the target  .    

 

2.2 Partial reflection 
In general cases of the long range measurements, the transmitted laser beam diverges such that its 

diameter becomes larger than the target dimension. Consequently, the beam is only partially reflected by the 

target, therefore the target reflects only a portion of the transmitted power. Thus the physical range equation for 

a partial reflected beam (far range) can be rewritten as [1, 12, and 13]: 
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                                                                     (2)
                       

This is the far range equation, where   represents the half divergence angle in (rad.), tarA  is the area of the 

target in (m²). Eqs. (1 and 2) represent physical laser range equations providing optical power of the Lambertian 

target. These approximate equations are widely used in range evaluation [1, 2, 5, and11] but suffer from the 

neglect of many factors: 

i- Both equations did not take into consideration several additional aspects of laser range finding, like 

atmospheric turbulence, beam spot radius at transmitter, and size of the target in relation to laser spot. 

ii- The dimensions of a target must be known before shooting, for high range accuracy measurements using 

Eq. (2). 

These two aspects are taken into account in the present work by introducing factors which calculate the 

influence of atmospheric turbulence along with the effect of beam spot radius at transmitter. 

 

2.3  Gaussian Laser Range Equation 

In the absence of optical turbulence (free space), the diffractive beam spot radius at distance z
 
 from 

transmitter is given by [7, 8]: 

2 2 1 2

2

2
( ) [(1 ) ( ) ]

z z
W z W

F kW
  

 

                                                                       (3) 

W  represents beam spot radius at transmitter ( z = 0 ) , defined as the point at which the field amplitude is 1/ e  

of that observed on the optical axis , i.e. the beam center , and  F  
is the face front radius of curvature at the 

transmitter  , and  k  is the propagation constant ( 2 /  ) in(
1m

). In case of divergent beam ( / 1z F   ), 

Eq. (3) can be re-written as [8]:  
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                                                                                   (4) 
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For a Gaussian beam in far-field conditions (i.e., z  large), 
22 / 1z kW  , Eq.(4) can be approximated to 

[ 2  ] : 

2
( )

z z
W z

kW W




 

 

                                                                                           (5) 

In terms of half beam divergence angle   , Eq. (5) written as [2]  

( )W z z                                                                                                         (6) 

Where: 

2

kW W





 

 

        (In radian)                                                                                  (7) 

Eq. (5) and Eq. (7) clearly indicated that, a small beam radius W
 
will produce a large beam divergence [4]. 

Sahapong and Widjaja [1] estimated a new LRF  equation corresponding to   a Gaussian beam profile model 

using 
21/ e  the point of irradiance to define the beam spot size as:                  

2 2
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This is the Gaussian range equation, where tarr  is the target’s radius in (m). Eq. (8) used to calculate the range 

for near and far distances .This equation needs to introduce the corrective factors of the atmospheric turbulence 

and the beam spot radius at transmitter. These two factors are taken into accounts in both ground to ground (g-g) 

propagation and the slant path propagation (g-a). In addition, a new method for estimating the value of ( cos  

) is demonstrated, and the comparison with the other approaches are made. 

 

3. Atmospheric optical turbulence 
Turbulent atmosphere can be represented as a set of vortices , or eddies , of various scale sizes, 

extending from a large scale size L  called the outer scale of turbulence , to a small scale size ol  called the 

inner scale of turbulence [7,14]  . Therefore the optical turbulence in the atmosphere can be characterized by 

three parameters: ol , L  
, as well as the structure parameter of refractive index fluctuation 

2

nc . The inner scale 

is defined as the size of the smallest atmospheric eddies and its value near the ground is typically observed to be 

around (3 to 10 mm), but generally increases to several centimeters with increasing the height above the ground  

h  . The outer scale is defined as the size of the largest atmospheric eddies for which atmospheric turbulence 

may still be considered isotropic and usually taken to be roughly ( / 2)h . Some models predict maximum values 

of outer scale between 4 and 5 meters and others predict the outer scale can be several hundred meters or more 

[10]. As a laser beam propagates through the path from the transmitter to the target and back to the receiver, the 

beam encounters random fluctuations in the refractive index of the atmosphere due primarily to temperature 

differences along the path. Therefore the effect of atmospheric turbulence on the target return power received by 

a laser rangefinder may be characterized by the parameters 
2

nc
 
, ol  ,   and receiver diameter D . These 

parameters are of a major importance on the received power and consequently on the range accuracy at 1.54 

m  [12, 14], and are numerically simulated in the present work. 

 

3.1  Refractive index structure parameter  

Refractive index structure 
2

nc  is considered as a key for the information about the way in which beam 

is affected by turbulence. This parameter changes as a function of altitude and alters the behavior of the 

aberrations. As 
2

nc
 
increases, so does the effect of the beam spot aberration typically, 

2

nc
 
decreases in 

relation to altitude [7]. The refractive index alone provides adequate information about the turbulent region in 

horizontal path. Therefore 
2

nc  used to distinguish between three turbulence regimes where 
2

nc <
2

17 310 m

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in the weak turbulence  and   
2

17 2 13310 10nm c
  

2
3m


  in the moderate turbulence and   

2

nc >

2
13 310 m


   in the strong turbulence [6, 15].       

Values of 
2

nc  near the ground in warm climates generally vary between 
14 2 310 m 

 , and 
12 2 310 m 

 

the latter of which is considered strong turbulence in many regions [12]. Environmental effect of 
2

nc

 

is 

characterized by three main parameters: the time of day, altitude above ground level, and wind speed [5]. The 

minimum value of
2

nc  is at sunrise and sunset when air temperature is closest to ground temperature. 

Temperature gradient is generally greatest at midday and midnight when ground is warmer than overlying air, 

thus increasing 
2

nc
 
. As the altitude increases, the temperature gradient decreases, resulting of a minimum  

2

nc  

[6]. Mathematically, several 
2

nc ( h ) profile models have been developed over the years, one of these is the well 

known Hufnagel-Valley (H-V) model [7, 14, 15]

      
22 56 10 14 2( ) 8.148 10 exp( ) 2.7 10 exp( ) (0)exp( )

1000 1500 100
n n

h h h
c h v h c        

                       
(9) 

 

h  is the altitude above the ground level in (m) , v  is the surface wind speed (in m/s) , and 
2 (0)nc  is the 

normal value of 
2 ( )nc h

 
at the ground level where 

2 (0)nc =
2

14 31.7 10 m
  is considered as typical value of 

2

nc when 0h   and 21 secv m  [ 14,16 ] . In case of laser range, the typical propagation path of laser 

beam is often a horizontal, near ground path, therefore the atmospheric turbulence for this type of path 

frequently falls into what is categorized as strong fluctuation conditions due to large temperature differences 

between the earth ground level and the surrounding air [5]. 

 

3.2 Scintillation   

Scintillation can be classified as random intensity fluctuations caused by fluctuations experienced in 

the received irradiance when light beams propagate through a turbulent atmosphere. Measuring certain 

observations in the laboratory allows the scintillation to be calculated by Rytov variance
2

R , assuming 

0l   , L   and constant 
2

nc
 
along the propagation path,

 

2

R  can be written [4, 7, 12,17 ] 

2
2 2 7 6 11 6

2
1 1.23R n

I
c k z

I


 
  
 

                (unitless)                                                   (10)          

2

R  is the Rytov variance gives a variance for the log intensity fluctuations at  0l   , I  is the signal 

irradiance (or intensity) seeing by point detector. The notation here indicates that this is a variance of intensity 

fluctuations, and z  is the total propagation path length of optical beam in (m) (= 2R  in case of LRF ), k  is 

the wavenumber. The R  subscript emphasizes that this variance holds in the Rytov regime, where the 

turbulence is weak. When the turbulence is not weak, it is still possible to refer to the Rytov variance, as 

calculated from Eq. (10) [7, 17]. We noted from Eq. (10), that the Rytov variance increases with an increase in 
2

nc  at a constant R . Therefore, Rytov variance is customary used to distinguish between weak or strong 

fluctuation. In terms of this parameter the strength of turbulence is classified as 
2

R >>1 in case of strong 

turbulence, 
2

R =1 in case of moderate turbulence, and 
2

R <<1 in case of weak turbulence [12]  

3.2.1 Effect of inner scale l   on scintillation 

        For scintillation, only inner scale effects need to be considered, since large scale have little influence on 

scintillation effects. The true Rytov variance can be estimated as a function of the 
2

R   and the dimensionless 

Fresnel zone size,   ( )z l    
which represents the eddies size relative to the inner scale l   , an inner 

scale corrected Rtytov variance was found to be approximately [18]: 
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2 2
2 2( ) [1 exp( )][0.48exp( ) 1]

( ) 14.43
R R

 
  

 
    

                                                                    (11) 

Where ( )  is given by:       
 

2( ) 11.1 4.7exp[ ( 1.7) / 7.632]                                                                                              (12) 

Eq. (11) and Eq. (12) were developed using a graphical analysis technique to obtain an approximate expression. 

Using 
2

  and   one can then compute the irradiance variance with l  as:   

2 2

2 ( ) [1 exp( )][( 1)exp( ) 1]
62.23

I

  
       


                                                                        (13) 

Where  ( ) 2.31 0.60exp(5 / )                                                                                                  (14) 

 

3.2.2 Effect of aperture-averaging on scintillation
 

We have considered scintillation effects in the case of a very small (point) receiver aperture. However, 

the usual use of a large collecting aperture in laser range finder systems leads to reduced scintillation at the 

detector. This effect is called aperture-averaging [7, 19]. Aperture-averaging theory has been extensively 

developed for a plane wave in weak and strong turbulence conditions by Andrews et al [7]. They provided an 

empirical relation for aperture averaging factor in a double-pass scenario, by implementing the ABCD ray 

matrix approach in weak turbulence medium. 
2

7 6[ ] [1 1.062( )]rec
ap weak

r
A k

z

 
                 

                                                                             (15) 

Where rrec is the radius of the receiver aperture in (m). So, when receiver-averaging is assumed, the variance of 

irradiance in case of weak turbulence can be calculated by multiplying the modified Rytov variance (Eq. 13) and 

the aperture-averaged factor (Eq. 15) as: 
2 2[ ] [ ] ( )I weak ap weak IA  

             (Under weak turbulence)                                 (16) 

On the other hand, Churnside [20] approximated the strong turbulence aperture-averaging factor as: 

2 2
2 1 7 3 1

2 2

1 1
[ ] [1 0.9( ) ] [1 0.61( ) ]

2 2

rec recI I
ap strong

I I

r k r
A

z

 

  

  
    

                

(17)

 

Where 
2 2 3 5[1.46 ]nk c z  is the plane wave spatial coherence radius (Friend’s parameter) in horizontal 

path for both weak and strong fluctuation regime in (m). Therefore, in the case of strong turbulence, the variance 

of irradiance can be written as: 

2 2[ ] [ ] [ ( )]I strong ap strong IA  
                     (Under weak turbulence)                                  (18) 

 

4. Effective Beam Spot Radius 

Beam spreading due to pure diffraction W  is described by Eq. (4). Additional beam spreading is due 

to optical turbulence is predicted by the mean irradiance assuming the neglect of the outer-scale effects. The 

effective beam size in both weak and strong turbulent regimes in horizontal path is given by [14]: 

 
(1 )effW W T  2 5 6 1 2[(1 1.33 )]RW                               In (m)                                        (19)   

The additional term T  describes the change in the on-axis mean irradiance at the receiver plane.  In turbulence 

medium,
22 ( )z kW z   is the Fresnel ratio. The effective beam spot radius effW  is a measure of the 

effective turbulence induced beam spot size [16]. 

   On the other hand, the laser beam propagation on slant path becomes very important when the parameter  
2

nc  

varies along the propagation path and the atmosphere being distributed non-uniformly, then Eq. (19) must be 
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developed [21]. When the laser beam propagates in slant path from ( 0z   to z L  ) , and by integrating the 

magnitude of 
2 ( )nc z  over a weighted path integral , then the additional parameter T  is given by [7].

  

 

7 5 5

26 6 3

0

4.35 ( ) ( )(1 )

L

n

z
T k L c z dz

L
  

                                                                                         (20) 

The resulting effective beam radius in slant path is given by: 

7 6 5 6 2 5 3

0

1 4.35 ( ) ( )(1 )

L

eff n

z
W W k L c z dz

L
   

                                                    (21) 

Equation (21) is used to calculate the beam spot radius for laser beam propagates through turbulent slant path 

and refers to dependence of effective beam spot radius on propagation distance and altitude. 

       

5. Atmospheric Turbulence Corrective Factor 
The laser range equations described in Eqs. (1), (2) and (8) do not take into accounts for the effects of 

distorted beam properties. A corrective term that accounts for the difference in the intensity in the presence of 

atmospheric turbulence versus the irradiance due to free-space propagation was developed [8]. This term is 

defined as the ratio between power incident on the receiving aperture with atmospheric turbulence due to 

refractive-index fluctuations and the power incident on the receiving aperture after reflection from the target in 

free space due to diffraction effects alone, is given by [8]: 
2

2

2

2

2
1 exp( )

2
1 exp( )

rec

effturb
turb

recfs

rec

r

WP

rP

W



 

 

 

                            (unitless)                    (22)                recW  is 

the beam radius of the reflected beam at the receiver plane in ( m ) ,which is calculated using the first minima of  

the beam’s Airy diffraction pattern [ 5 , 22 ] 

1.22
rec

tar

R
W

D


                                                                                                                          (23) 

Where tarD , is the diameter of the target in (m). The corrective factor turb
 
is incorporated into the physical 

range equations for further correction to the characteristic effects of the turbulence on the beam. 

 

 

6. Beam Spot Radius at Transmitter 
In term of the beam parameters, the beam spot radius at distance z from the transmitter can be re-

written as [8, 16, and 23]: 

 

1
2 2 2( ) ( )W z W                                                                                                                       (24) 

The transmitter parameters 1 ( )z F  
 , 

21 (2 / )z kW     represents beam curvature parameter and 

Fresnel ratio entire in free space respectively. The radius of the beam waist bW  with a distance bz
 
from the 

plane of origin is given by [23] 

1 22 2
2(1 )

1 ( )
2

f

b

f

W
W W

kW

F


 











                                                                       (25) 
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 And 

bW







   

(at point b )                                                                          (26)   where 
22 /f F kW     is 

the beam focusing parameter . In a real situation, at relatively large propagation distance,
2( / 2 ) 1kW F    , 

and the divergence calculation using Eq.(33) reduces to ( /W F    ) . Similarly, Eq. (6) could be expressed in 

a simplified form [19, 24, 25]. 

( )W z W z                                                                                                                              (27) 

 

7. A modified Form of Laser Range Equations 
As we mentioned before ,   represents the angle of target surface normal relative with laser receiving 

axis .Many researchers consider that the diffuse target plane and the laser rangefinder system is vertical, that is 

 =0


 ( cos 1  ) [2 , 26] . Or they suppose that the overall resultant value of  cos   may be approximated 

by 0.5 , depending on that the target does not have a flat surface but a topographical structure [1].  But in fact, it 

is very difficult to ensure that the diffuse target and the laser rangefinder system are vertical or the target has a 

topographical surface, that means  =0


 or cos  = 0.5. So the condition that the incident angle not equal zero 

also can bring the error to the value of sensitivity. As we can see from Fig. (1) , the cos  part in equations 

depends on the surface roughness. When the measured area is flat then the incidence angle is the same as scan 

angle. The surfaces are assumed to have Lambertian backscattering properties. This means that the energy that 

is backscattered from the surfaces decreases with the increase of incidence angle. It is clear that those factors 

have to be taken into account when using the intensity data [27] 

 
Fig.1: The variation in the angle   =90º to -90º with incident laser beam to the normal on target surface 

[27]. 

 

In practice, the angle 
 
can be considered as a continuous random variable with the probability 

distribution function (P.D.F) as ( ) cosf   . There are a number of useful functions with each probability 

distribution, and one of them is the Cumulative Distribution Function (CDF) .This function enables to calculate 

the probability of various outcomes, or events. By definition, the CDF indicates the probability the random 

variable X takes on a value less than or equal to x  .The definition of the CDF is very simple that the CDF takes 

on values in the interval between (0, 1) .To calculate the probability that the variable X takes on a value more 

than x , we can use the following formula [28] 

( ) 1 ( ) 1 ( )p X x p X x p x                                                                                                      (28) 
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Similarly, we can calculate the probability that the random variable falls into some interval (x1, x2): 

1 2 2 1( ) ( ) ( )p x X x p X x p X x                                                                                              (29) 

For continuous distributions, ( )p X x always equals zero, so the expressions ( )p X x and ( )p X x are 

equivalent and we can use the following formula: 

( 1 2) ( 1 2)p x X x p x X x    
 

( 2) ( 1)p x p x                                                                         (30) 

Thus, in term of angle  we have:  
 

1 1( ) ( ) ( )p p p                                                                                                              (31) 

( )p    represents the probability of finding angle   between values  .and 1 . Now we can re-write Eq. 

(31) in term of integral as: 

1

1

0 0

( ) cos cosp d d

 

          



1

0 0sin ] sin ]
    

 

                                                                1sin sin                                                               (32) 

We calculated the probability of variations in   between many values of   and 1  ranging from ( 0
) to (

90
) by the Eq. (32). The Cumulative probability as a function of   was drowning in Fig. (2). the mean value 

of cumulative probability 0.1  for the ( 0 90 
) range of . The same probability for the negative values 

of  . The corresponding angle of the mean value of CDF is 49.9 
 i.e. ( cos =0.64). This value is more 

accurate than the approximate value usually used by many references in laser range calculations without taking 

into account the statistical variations of the random variable of angle . 

 
Fig. 2 .The cumulative probability as a function of 

 
 

Another factor that must be taken into consideration is the shape factor Pshape. The confusion in this 

factor is introduced by the beam divergence based on the 1 e  point of irradiance. The correct point of irradiance 

is based
21 e  on the point of irradiance to define the beam spot size .In order to account for this; the   factor

shapeP  that accounts for differences between the transmitted-beam-shape’s resulting irradiance profile and an 

equivalent beam with uniform irradiance. For a Gaussian beam 2shapeP 
 

with beam divergence angle 

measured to the 
21 e

 
point of irradiance [5]. Taking into accounts the corrective factors for the effect of 

atmospheric turbulence, beam spot radius at transmitter,  beam propagation factor, and the cosυ, one can re-

write the LR equations (1),(2),and (8) in a new form as : 
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                                  Total reflection          (33) 

2

2
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cos
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8 ( )

t r tar t shape

D turb a

D A PP
P R

W R R

  
  

 

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                           Partial reflection        (34) 

2 2
2

.2 2

cos 2
[1 exp( ] ( , )

8 ( )

t r t shape tar
D turb a

D PP r
P R

R W R

  
  


  



 Gaussian beam            (35) 

 

8. A New Form of a Gaussian Beam Equation 
Theories relating to atmospheric turbulence effect have been studied over many decades in many 

researches in order to better understand the impact of turbulence on the propagation of a laser beam through the 

atmosphere [4, 6, 7, 16, and 17]. But all these available research were focused on the effect of turbulence on 

laser beam propagation through atmosphere or on Free Space Communication ( FSO ) performance , without 

referring to the impact of turbulence on laser range performance except few researchers .Cole and Haeri [5]  

were studied the turbulence effect using established theory, and developed a corrective term for use in the laser 

range equations that accounts for turbulence induced beam spreading  and compared to experimental results . In 

the other hand, some researchers like Kruapech and widjaja [2] were developed a new Gaussian beam equation 

in free space without referring to the impact of turbulence in his calculations. Also, Li [29] proposed a novel 

method which can estimate the maximum range of laser ranging system without taken into account turbulence 

effect. However , in this work we have modified a new Gaussian laser range equation uses the turbulent medium 

for beam propagation ,and  assuming that the laser signal propagates through a path as cone shape , it’s head at 

laser source and base at target with radius ( R ) where   represents a half angle of beam divergence in (rad.) . 

Therefore, the area illuminated by cone spot light at distance R  equals [ ( R ) ²]. Consequently, the signal 

power at the circular target surface is given by [1, 2]  

2( )

t
tar tar

P
P A

R 
                                                                                        (36) 

in the presence of atmospheric turbulence effects, the irradiance of the radiation incident on the target surface, 

where the collecting lens in this case as a “soft aperture” lens or Gaussian lens is described by [14,16] 

2 2

2 2

2
( , ) exp( )

eff eff

W r
I r z I

W W
  




                                                                                                 

(37) 

 Where r  is the lateral distance from the center of the beam which is defined as ( 
2 2x y )  , W  

 
is the  

beam spot radius at the transmitter , effW is  given by Eq. (19) in case of ground horizontal , or by Eq.(21) in 

case of slant path , (0,0)I I  is The transmitted intensity at the centerline of the beam (with turbulence) 

defined as 
22 /beam effI P W

 

[1,2,19] . In the presence of atmospheric turbulence between transmitter and 

target, the received signal power at the target plan can be approximated by [14] 
2

0 0

( , )tarP I r z rdrd





                                                                                                       (38) 

Using the special integral 
2

1

0 2

1
( )

2

2

n ax

n

n

x e dx

a










  along with Eq. (37), and beam tP P   one can obtain: 

 

2 2

2 24
t t

eff eff

tar

W D
P P

W W
P          (Considering 

 
2W D   )                                                    (39) 
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Comparing Eq. (39) and Eq. (36) yields: 
2

2 2( ) 4

tar

eff

A D

R W 
                                                                                                                         (40) 

Substituting Eq. (40) into Eq. (2), we obtain a new form of the range equation for a Gaussian beam in turbulent 

medium as: 
4

2

2 2

cos

32

t r t shape

a

eff

D

D PP

R W
P

  
                                                                                                 (41) 

Eq.(41) is a new Gaussian reformulation of  range equation in terms of receiver diameter D  and the beam spot 

radius in turbulent atmosphere 
effW  , that has never been reported before, taking into accounts turbulence 

parameters affecting the laser range finder system. The signal power at detector is inversely proportional to the 

square of the beam spot radius propagation through a turbulent atmosphere. 

 

9.  Simulation Results and Analysis  
Numerical simulation of the influence of the governing parameters of the atmospheric turbulence, 

refractive index structure parameter, inner scale, and receiver aperture size on the received power of the LRF  
are studied. The laser wavelength λ= 1.54 m

 
 is used. The comparison with the free space condition is made. 

Computer simulations are realized by the Matlab environment for the study of the turbulence effect and the free 

space atmosphere. The data given in Table (1) are used for the simulation program, and also show the values of 

the attenuation coefficient of atmosphere for various meteorological conditions at wavelength =1.54 m  [1, 

14, 30, and 31]. 

The atmospheric scattering for the ground-to-ground transmission is calculated using the Beer’s law [13, 32] 

which states that [ ( ) exp( )a ag g R    ], where a  is the atmospheric transmittance, a  is the scattering 

attenuation coefficient in (
1km
) and given by [13, 29]:  

( )
3.912

( ) ( )
0.55

q

a

m

vR





  


  

                                                                                        (42)  

Thus, the exponential equation of atmospheric scattering transmittance as a function of visible range and laser 

wavelength is given by: 

3.912
( ) exp[ ( ) ]

0.55

m q

a

v

g g R
R







  
                                                                               (43)

 

 Where vR is the horizontal visibility in ( km ),  q
 
is a parameter depends on volume contribution for particles 

in atmosphere and it is value equals (1.6) for  50vR km  , (1.3) for 6 50vkm R km    

and equals ( 30.585 vR  ) for 6vR km  . In addition to ground–to–ground transmission mode, there are two 

another laser transmission modes ground to air ( g a ) and air-to-air ( a a ) transmissions. When laser 

transmits from ground to air through free space, the atmospheric transmittance as a function of zenith angle and 

target’s height h  in (km) can be expressed as [13]. 

3.123
( ) exp{ sec ( )[1 exp( 0.835 )]}a z

v

g a h
R

                                               (44)   Where  z   is 

the zenith angle (the angle between the geographical vertical and incident directions in radian). Also, if the 

height of target and laser transmitter are  1h
 
, 2h

 
respectively, the air-to-air (a-a) atmospheric transmittance can 

be expressed as [13]: 

 

2 1

3.123
( ) exp{sec ( )[exp( 0.835 ) exp( 0.835 ]}a z

v

a a h h
R

                                                           (45)       
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9.1 Atmospheric transmission 

It has been shown in the previous sections that the power received at the rangefinder detector mainly 

follows the atmospheric transmission. Accordingly, it becomes now important to know the behavior of this 

parameter at different atmospheric conditions to calculate the range performance. Using the Eq. (43), the change 

in ( g g
 
) atmospheric scattering transmittance curve of 1.54 m

 
wavelength as a function of range is 

shown in Fig. (3). It can be noted the effect of the horizontal visibility variations on the laser propagation in the 

atmosphere. The transmission decreases exponentially with range increasing in low values of horizontal 

visibility vR
 
. In the case of clear weather conditions ( vR =23 km), the atmospheric transmission approaches 

high values and the curve approaches to straight line, while at poor visibility 0.5vR km
 
, the atmospheric 

transmission decreases rapidly to minimum values as the range increases and approaching zero at high values of 

range. These behaviors are due to the linear scattering by aerosol constituents of the atmosphere (effect of 

aerosols attenuation).   

    Fig. (4) shows the ( g a ) transmission as a function of range at clear weather conditions and different 

zenith angle using the Eq. (44). Obviously, in all cases when the transmission distance is increased, the 

atmospheric transmittance will be considerably decreased. At high zenith angle (ϴz=80º), the atmospheric 

Tables 1:  System and target parameters used in the calculations and the International visibility 

code with corresponding attenuation coefficient values. 

parameter symbol value unit Ref. 

Laser wavelength   1.54 m  10 

Laser pulse width   6.5 secn  10 

Laser peak power 
tp  

0.33 MW  1,2 

Half divergence angle   0.6 .mrad  2 

Receiver optical efficiency 
r  0.45 -- 1,2,28 

Transmitter optical efficiency 
t  0.85 -- 1,2,28 

Receiver aperture area 
recA  

31.6 10   2m  
1,2 

Receiver aperture radius 
recr  0.025  m  1,2 

Beam spot radius at the transmitter W  
0.025 m  6 

Receiver aperture diameter D  0.05  m  1,2,28 

Target radius 
tarr . 

1.15  m  
1,2 

Target area (NATO standard ) 
tarA . 

2.3 2.3   
2m  1,2 

Target reflectivity    0.21 -- 1,2 

Typical refractive index structure 

parameter at ground level 
 

2 (0)nc  
1.7X10

-14  
2 3m  15 

Refractive index structure parameter at 

ground level in strong turbulence 

2

nc  1X10
-12 2 3m

 15 

Refractive index structure parameter at 

ground level in weak turbulence 

2

nc  1X10
-17 2 3m

 15 

The International visibility code with corresponding attenuation coefficient values.  

Weather condition 
vR ( )km  ( )a 

      
 

( )km  

Ref. 

Clear weather 23 0.1 1,2 

Rain 2.8 1.059 19 

Haze 1 3.17 19 

Fog 0.5 6.65 19 
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transmittance is much smaller than that at lower zenith angle levels because, at higher zenith angle, the 

transmission path is close to perpendicular to the ground and the relative height between laser source and target 

increases. This behavior is in agreement with that obtained in [13]. 

 
Fig. 3:  Horizontal atmospheric scattering transmittance vs. range 

 
Fig. 4: Atmospheric transmission vs. range of ( g a ) propagation at different values of zenith angles. 

 

9.3  Effect of inner scale and aperture-averaging on scintillation. 

Scintillation can be calculated by Rytov variance with zero-inner scale (Eq.10). Fig. (5) demonstrates 

the relation between the Rytov variance with the laser transmission distance in the case strong and weak 

turbulence. It can be noted that the scintillation rises against propagation distance, and gives high values more 

than 1000 in strong turbulence. Furthermore the effect of the turbulence on the scintillation index is more 

pronounced at large propagation distance and the turbulence decreases as refractive index parameter decreases.  

 

         Fig 5: The relationship between Rytov variance 
2

R  and the range (strong and weak turbulence) 
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Using Eq. (13), the relationship between the irradiance variance 
2 ( )I   with range in the case of 

strong and weak turbulence with non-zero inner scale, i.e., ( 3 , 10 )l mm l mm    is illustrated in Figs. (6) 

and (7) respectively. Clearly, observe the distribution based on Eq. (13),but now much smaller irradiance values 

are obtained comparing with that computed by Eq. (10) in case of strong turbulence. The propagation path is 

assumed to be arbitrarily long and thus there is no remaining coherence in the wave, and this reduction in the 

beam coherence occurs due to the field perturbation at sufficient distance from the transmitter. Such an effect 

does not appear in the weak turbulence [33]. Simulation results of the Rytov variance given  by Eq. (10) and that 

of Eq. (13) predicts  a small error ( 0 ) when small path varying inner scale was introduced in case of weak 

turbulence, but this error increases with inner-scale increasing ,this clearly shown in the case of strong 

turbulence( Fig.6). The height of this peak depends on the value of    used in Eq. (11). Eq. (3) has the proper 

asymptotic behavior, the peak of σ
2

I(ψ) is situated at R=1km, gradually decreases to R=4km and remains 

constant at Rϴ4km.  

 

            Fig 6: The relationship between the irradiance variance 
2 ( )I   and the range (strong    turbulence). 

 
Fig 7: The relationship between the irradiance variance and the range (weak turbulence). 

 

To investigate the effect of aperture-averaging on irradiance scintillations, the irradiance variance as a 

function of range with effect of aperture-averaging through strong turbulence 
2 12 2 31 10nc m    (Eq.18) and 

weak turbulence
2 17 2 31 10nc m    (Eq. 16) are studied. The value of source aperture radius is assumed to be 
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0.025m. The same behavior is remarked as in the case of of turbulence-induced scintillation with the inner scale 

effect.  

9.3 Beam spot radius and turbulence factor calculations  

The beam spot radius at distance z from the transmitter in pure and strong turbulent atmosphere W ,

effW respectively are calculated by Eq. (4) and Eq. (19) for horizontal path in two cases of turbulence (strong 

and weak) .Fig.(8) presents comparison between W  and effW . In same figure, the relation between W and 

effW
 
for slant path propagation with 2000m target height is presented. Clearly, in the case of horizontal path, 

the difference appeared at strong turbulence more than weak turbulence. At the distance 1 km from the 

transmitter, the spot size of the laser beam W  equals 0.031 m and effW  = 0.034 m, and at the distance 10 km, 

W = 0.219 m and effW  = 0.63 m. One can conclude that the expansion of the spot size of the beam not only 

depends on the distance from the transmitter, beam divergence, target and/or receiver but mainly depends on the 

atmospheric turbulence along the transmission range. The diffraction of the beam propagates through the strong 

turbulent atmosphere causes an increase in turbulence strength with increasing distance from the transmitter.  In 

the case of a slant path, at small propagation distance and large values of target height,W  and  values 

converge. A pronounced effect of turbulence appears at large propagation distances. It is found that there is no 

much difference in the curve behavior when another target height is used. On the other hand, in the case of weak 

turbulence, no difference between effW  and W with range in both cases, the horizontal or the slant path but the 

difference has shown to appear in small target height, i.e. ( 2000 )h m
 

 
Fig. 8:  Beam spot radius and effective beam spot radius vs. propagation distance. 

 

Figures (10) (a, b) shows the feature of the turbulence factor with the range at variable receiver 

aperture and refractive index parameter, respectively, at zero – inner scale. The aperture transmitter radius is 

taken to be W   0.025 m. Maximum values of turbulence factor
turb  are predicted at small range ( 

0.5R km ) then decreases exponentially with increasing range up to 2 km.  Such decay is no longer occurs 

when the receiver aperture diameter is increased to 0.5recr m .   The significance of this competition is that 

the influence of turbulence is looking like the optical noise.  On the other hand it is shown that the turbulence 

factor is inversely proportional to the beam spot radius at transmitter at a constant receiver area, and goes to 

minimum value at strong turbulence. This means that, high values of
2

nc ,
 

leads to minimum values of 

turbulence factor. These parameters should carefully be chosen for maximum received power. The same 

behavior is observed for the slant path propagation with no record of the effect of the target height.  

 

effW
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Fig.10-a: Turbulence factor in horizontal path vs. range with recr  variable 
 

 

Fig.10-b: Turbulence factor in horizontal path vs. range with variable 
2

nc  
 

9.4  Detector received power simulation 

This section focuses on the parameters which play a major role in the design simulation of the LRF and thus 

affecting the detector received power. The modified Eqs (33) to (35) are studied. These parameters include, the 

cosine angle cos , beam spot radius at the transmitter W  and the turbulence factor turb . It is shown that the 

most effective parameter on the received power is the turbulence factor, particularly at long propagation 

distances ( 2R km  ).   

For far range calculations (Eq. 34), it is found that the calculated power is 361 W  without turbulence effect 

reduces to 9.9 W  at 0.5R km  when weak turbulence is taken into consideration and reduces to

41 10 W  in strong turbulence. This change increases drastically at ranges greater than 0.5R km . The 

modified parameters are very effective in long range and less effective at short distances ( 0.5R km ) as 

shown in Tables (2) and (3) which represents a comparison between received power calculated by range 

equations before and after modifications in two turbulence cases. The new suggested parameter is the power 
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shift
 DP  given in tables (2) and (3). This power shifts is introduced to represent the difference in detected 

power, calculated by the relation [ ( ) ( )D D Turbulence D FreeSpaceP P P    ] in order to show the turbulence effect 

on the received power values at different propagation distances. Table (4) shows a comparison between the 

received power calculated by Gaussian beam equation in far range in absence and presence of turbulent 

atmosphere at different weather conditions, through slant path ( 0.5h km
 
, 0l   ) . Large decrease in the 

received power for the case of the ( g g ) propagation at the same transmission distance. This appears more 

pronounced in Gaussian beam equation than for a far range.  In addition, the maximum detectable range is 

significant impacted by propagation mode, and the effect of turbulence is significantly reduces the received 

power. According to the calculations, it makes possible to choose appropriate laser transmitted power, 

divergence angle, detector parameters for the optimization of the design requirements of laser rangefinder with 

or without turbulence. These parameters play a significant rule for the operation of laser rangefinder under 

different environment conditions. On the other hand , it appears that, the horizontal turbulence medium is more 

effective than the slant path due to the highest value of the turbulence factor in slant path  than that in the case of 

horizontal ground propagation one. 

  The detector received power as a function of range in free space is shown in Fig. (11)  using (g-g) propagation 

path with zero-inner scale ( 0l 


). A nonlinear relationship is obtained at clear weather condition (

23vR km ). However, it appears that Eq.  (2) is erratic, particularly, when the range is short such that the 

target area is larger than the light cone, the detector power becomes unrealistically large. It is shown that when 

R  is smaller than 2150R m  (bisecting point which separates between near and far range calculations), 

Eq. (2) produces ambiguous results, while Eq. (1) and Eq. (8) are very close, for R is larger than 2150. It is 

interesting to remark that the Gaussian beam range Eq. (8) reproduces the observed range much better than the 

conventional range Eqs. (1) and (2). In addition Eq. (8) is pivoted the need of the target area and the beam 

diameter required by using the conventional range equations. Another advantage of the Eq.(8) is the overridden 

of the discontinuity when R  approaches to R  from left ( R ϴR ) and from right ( R ϴR ). It is important to 

note that Eq.(1) approaches to Eq.(8) at range R = 2150 m , after this value, the two range equations begin to 

move away because of the correction factor effect of 2 2 2{1 exp( 2 )}tarr R  which begins effective when 

the range is greater than R . Fig. (11) appeared identical with the experimental data given in [1, 2, and 26]. 

    The effect of the modification factors on the received power as a function of range using the same data are 

shown in Figs. (12a, b). In the case of weak turbulence 
2 17 2 31 10nc m    and strong turbulence

2 12 2 31 10nc m   . As seen in the figure, the non-linear relation continued as well as abnormalities of Eq. 

(1) but the value of R  reduced from 2150 m to 2100 m in the two turbulence cases and the received power 

decreased in strong turbulence. As shown in figures the area before and after R decreases when the correction 

factor is used and as a result the calculated power by using the three modified equations converges at long 

ranges and the received power decreases significantly due to the impact of the modification factors.  

   The comparison between the modified range equations (33, 34, and 35) with the new Gaussian range equation 

in turbulent medium (Eq.41) is made, and the typical features is shown in the Figs. (13 a, b). The comparison is 

done in case of strong and weak turbulence in clear weather conditions. It is shown that the received detector 

power estimated from new Gaussian equation is identical with that calculated for the near range at the condition 

of the increase in the receiver aperture and the beam spot radius at the transmitter. The advantage of new 

equation is in its independency of the divergence of the laser beam angle and the target radius and height in all 

propagation distances, and appears more refractive structure dependent which representative by effW . It is 

remarked that the new turbulent equation produces identical results with that reported by Kruapetch and widjaja 

[2], for the range ( 2.8R km
 
) and for the intersection point ( 2.8R km ) in both cases of turbulence. This 

confirms the validity of the model used and the approximation made for the derivation of the Gaussian range 

equation. Finally, Table (5) illustrates the comparison between detected power using the modified Gaussian 

equation and the new Gaussian. It is shown that the differences in the power values between them is very small 

except at distance R< 0.5km. 
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The power shift values, defined by ΔPD= (Pturb- Pfree) are shown as expected to be negative (red shifts). The 

average values of ΔPD for all turbulent cases are plotted as a function of range R (Fig.14a). It is shown the 

following empirical relation fits the simulation results: 

           
6 5 4 3 2 2 2

( ) 0.088 1.8 15 62 1.5 10 1.8 10 95P W R R R R R                [46] 

Equation (46) can be considered as a metric ruler for the influence of atmospheric turbulence. Fig(14b) shows 

the 3D plotting between the power shifts and the turbulence factor, which are the most significant factors in 

describing the turbulence effect, as a function of range, and can be considered as a prototyping range 

explanation.     

 

 

Table 2: Comparison between the received detector  power in a modified form in case of weak turbulence 

 

 

R  
( )km   

( )DP W
    

 

    
 

( ) ( 1)DP W  
 

Near 

range   

Far 

range   

Gaussian 

beam    
Modified 

Near 

range   

Modified 

Far range    

Modified 

Gaussian 

beam      

Near 

range   

Far 

range    

Gaussian 

beam      

0.5 19.3 361 19.3 0.623 9.9 0.623 
18.4 351 18.7 

1 4.8 22 4.8 0.155 0.67 0.155 0.4 21 4.6 

1.5 2.1 4 2 0.069 0.13 0.066 
0.2 4.3 2.0 

2 1.2 1.4 1 0.038 0.043 0.032 
0.11 1.3 0.98 

2.5 0.77 0.57 0.5 0.024 0.018 0.016 
0.07 0.56 0.51 

3 0.53 0.27 0.29 0.017 0.008 0.0094 
0.052 0.27 0.29 

3.5 0.39 0.15 0.17 0.012 0.0047 0.0056 
0.038 0.14 0.17 

4 0.30 0.08 0.02 0.0097 0.0027 0.0035 
0.029 0.08 0.1 

4.5 0.23 0.05 0.07 0.0076 0.0017 0.0023 
0.023 0.05 0.07 

5 0.19 0.03 0.05 0.0062 0.0011 0.0015 
0.018 0.03 0.047 

Table 3: Comparison between the received detector  power in a modified form in case of strong turbulence 

 

 

R  
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0.5 19.3 361 19.3 0.006 0.0004 0.00025 19.3 361 19.3 

1 4.8 22 4.8 0.0004 0.00009 0.00006 4.8 22.6 4.8 

1.5 2.1 4 2 0.00008 0.00004 0.00026 2.1 4.4 2.0 

2 1.2 1.4 1 0.00002 0.00002 0.00014 1.2 1.4 1.0 

2.5 0.77 0.57 0.5 0.00001 0.00001 0.000009 0.77 0.5 0.53 

3 0.53 0.27 0.29 0.000005 0.000006 0.0000006 0.53 0.27 0.29 

3.5 0.39 0.15 0.17 0.000003 0.000003 0.000004 0.39 0.15 0.17 

4 0.30 0.08 0.02 0.000002 0.000002 0.000003 0.3 0.088 0.11 

4.5 0.23 0.05 0.07 0.000001 0.000001 0.000002 0.23 0.055 0.07 

5 0.19 0.03 0.05 0.0000007 0.0000009 0.0000016 0.19 0.036 0.04 
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Fig.11: Detector received power vs. Range in horizontal path in free space ( 0l 


  ) 

Table 4: detector received power at different transmission modes   
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Fig. 12-a: Detector received power vs.  Range in horizontal path (weak turbulence.)( 0l 


  ).
 

 

Fig. 12-b: Received power vs.  Range in horizontal path (strong turbulence.)( 0l 


  ).
 

 
Fig (13.a) received power vs Range using the modified and the new range equations (Strong turbulence) 
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Fig.(13b): Received power vs Range using the modified and the new range equations (weak  turbulence). 

 
Fig. (14-a): The relation between power shift with corresponding range 

 
Fig. (14-b): 3D-ploting represents the relation between power shift with corresponding range and 

turbulence factor 
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10. Conclusions 
The following conclusions are drawn: 

a- The governing parameters for turbulence influence are cn
2
, W0 and τturb should carefully be chosen for 

maximum range system design in order to reduce the turbulence influence in the optical received power. 

b- The most effective parameter on the received power is the turbulence factor τturb , particularly, at long 

propagation distance. 

c- The turbulence power shifts with respect to range can be considered as a metric ruler for the influence of 

turbulence. 

d- The suggested  new Gaussian range equation reproduces the observed data and can be considered as an 

alternative form to the Gaussian range equation with turbulence effects. 

e- The impact of the correction factors are seen through the convergence of the range equations, particularly, for 

range values outside the bisecting point.  
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