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Abstract: Let G be a nontrivial connected graph. The distance between two vertices u and v of G is the length 

of a shortest u-v path in G. Let u be a vertex in G. The eccentricity e(u) of a vertex u is the distance to a vertex 

farthest from u. A vertex v is an eccentric vertex of u if d(u,v)=e(u), that is every vertex at greatest distance from 

u is an eccentric vertex of u. A vertex v is an eccentric vertex of G if v is an eccentric vertex of some vertex of 

G. Consequently,if v is an eccentric vertex of u and w is a neighbor of v, then d(u,w)  d(u,v). A vertex v may 

have this property, however, without being an eccentric vertex of u. A vertex v is a boundary vertex of a vertex 

u if d(u,w) d(u,v) for all ).(vNw The boundary graph B(G) based on a connected graph G is a simple 

graph which has the vertex set as in G. Two vertices u and v are adjacent in B(G) if either u is a boundary of v 

or v is a boundary of u. If G is disconnected, then each vertex in a component is adjacent to all the vertices in 

the other components and is adjacent to all of its boundary vertices within the component. A graph G is called a 

boundary graph if there exists a graph H such that B(H)=G. The main objective of this paper is to solve the 

equation B(H)=G for a given graph G. 
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1. Introduction and Existing Works 
The graphs considered here are nontrivial and simple. For other graph theoretical notation and 

terminology, we follow Buckley [4] and West [17]. In a graph G, the distance d(u,v) between a pair of vertices u 

and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex 

farthest from u. The radius r(G) of G is defined by r(G)= min )}(:)({ GVuue  and the diameter d(G) of G is 

defined by d(G)= max )}(:)({ GVuue  .A vertex v is called an eccentric vertex of a vertex u if d(u,v)=e(u). 

A vertex v of G is called an eccentric vertex of G if it is an eccentric vertex of some vertex of G. 

Interconnection networks are pervasive in today’s society, including networks for the distribution of 

goods, communication networks,social networks, and the Internet, to name just a few. The topology of an 

interconnection network is usually modeled by a graph, either directed or undirected, depending on the 

particular application. In all cases, there are some common fundamental characteristics of networks such as the 

number of nodes, number of connections at each node, total number of connections, clustering of nodes etc. 

Many of the most important basic properties, underpinning the functionalities of a network, are related to the 

distance between the nodes in a network, such properties includes the eccentricities of the nodes, the radius of 

the network and the diameter of the network (see [4]). 

As a second level of abstraction, binary relations induced by distances in a graph can also represented 

by a graph. Theoretical research in this direction includes the study of antipodal graphs(see[2,3,17]), antipodal 

digraphs(see[8]),eccentric graphs (see[1]), eccentric digraphs(see[5,10,11,16]), radial graphs(see[12,13,14]), and 

radial digraphs(see[15]). 

The notion of eccentric graph of a graph G, was introduced by Akiyama et. al.[1]. The eccentric graph 

of a graph G denoted by eG , has the same set of vertices as G with two vertices u and v being adjacent in eG  if 

and only if either v is an eccentric vertex of u or u is an eccentric vertex of v in G; that is d(u,v) = 

min{e(u),e(v)}. The following results are given in this paper. 

1. A few general properties of eccentric graphs. 

2. A characterization of graphs G with eG  = pK  and with eG  = p 2K . 

3. A solution of the equation GGe  . 
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The concept of antipodal graph was initially introduced by [17] and was further expanded by [2,3]. The 

antipodal graph of a graph G, denoted by A(G),  is the graph on the same vertices as of G, two vertices being 

adjacent if the distance between them is equal to the diameter of G. If a graph G is disconnected, then the 

diameter d(G) is . If G is disconnected, then two vertices are adjacent in A(G) if they are in different 

components of G. 

In [8] Garry Johns and Karen sleno introduced the concept of antipodal digraph of a digraph. The 

definition of antipodal graph is extended to a digraph D where the arc (u,v) is included in A(D) if d(u,v) is the 

diameter of D. It is shown that a digraph D is an antipodal digraph if and only if D is the antipodal digraph of its 

complement D .For any digraph D=(V,E), we define the complement D  to be the digraph with the same vertex 

set V, with uv being an arc of D  if and only if vu   and uv is not an arc of D. 

For a graph G, its eccentric digraph ED(G) has vertex set V(ED(G)) = V(G) with an arc from v to u if 

and only if u is an eccentric vertex of v. If u and v are mutually eccentric, then there is a symmetric pair of arcs 

joining u and v. Fred Buckley [5] presented the eccentric digraphs of many classes of graphs including complete 

graphs, complete bipartite graphs, antipodal graphs and cycles and gave various interesting general structural 

properties of  eccentric digraphs of graphs. As one of the main result, he mentioned that  “ For almost every 

graph G, its eccentric digraph is  *)( GGED  , where  *G  denotes the complement of G in which each 

undirected edge had been replaced by two symmetric arcs. 

James Boland et.al [10] examined eccentric digraphs of igraphs for various families of digraphs and the 

behaviour of an iterated sequence of eccentric digraphs of a digraph. Joan Gimbert et.al. [11] proved the 

following theorems. 

1. Let G be a graph. Then the eccentric digraph ED(G) is symmetric if and only if G is self-centered. 

2. Let G be non-strongly connected digraph. Then ED(G) is symmetric digraph if and only if 

)2(...21  kCCCG k  or )1(...21  kCCCKG kn  Where kCCC ,...2,1  are 

strongly connected graphs.    

The paper [11] partly characterized graphs with specified maximum degree such that ED(G)=G. As one 

of the main results, it is ascertained that there exists a self-centered graph G such that ED(G)=G, containing an 

odd cycle. 

 Iqbalunnisa et.al [9] introduced the super-eccentric graph of a graph. A graph J(G) is said to be super-

eccentric graph of a graph G if V(G) = V(J(G)) and ))(( GJEuv  whenever d(u,v) ≥ r,where r is the radius 

of the graph G.A graph G is said to be n-eccentric if there are n different eccentricities in that graph. The one 

eccentric graphs are defined as self centered and always 2-connected. Some of the important results in this paper 

are 

1. For any graph G, J(G) = eG  if and only if G is one of the following: 

    (i) G is self-centered. 

    (ii) G is bieccentric and for each peripheral point the vertices in the (d-1)th       

          neighborhood must have eccentricity d-1. 

2. GGJ )(  if and only if either G has radius 2 or G is disconnected and each     

     of the component is complete. 

Kathiresan and Marimuthu introduced the concept of radial graphs [12]. The radial graph of a graph G 

denoted by R(G), has the vertex set as in G and two vertices are adjacent in R(G) if the distance between them is 

equal to the radius of G. If G is disconnected, then two vertices being adjacent in R(G) if they belong to 

different components. A graph G is called a radial graph if there exists a graph H such that R(H)=G. They gave 

a necessary and sufficient condition for a graph to be a radial graph. The following results are found in [12]. 

 

Theorem A [12] Let G be a graph of order n, then GGR )(  if and only if ,1FG where 1F  is the set of 

all graphs of radius 1. 

Theorem B [12] Let G be a graph of order n. Then GGR )(  if and only if either every vertex of G has 

eccentricity 2 or G is disconnected in which each component is complete. 

Theorem C [12] A graph G is a radial graph if and only if either G is a radial graph of itself or the radial graph 

of its complement. 

Theorem D [12] If 22FG  and G    23F , then G  is not a radial graph. 

Kathiresan and Sumathi [15] defined radial digraphs. For a digraph D, the Radial digraph R(D) of D is 

the digraph with V (R(D)) = V (D) 
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and )}.(),(d  )(,/),{())(( D DradvuandDVvuvuDRE  A digraph D is called a radial digraph if 

R(H) = D for some digraph H.If there exists a digraph H with finite radius and infinite diameter, such that 

R(H)=D, then the digraph D is said to be a Radial digraph of type 1. Otherwise D is said to be a Radial digraph 

of type 2. They proved that if D is a radial digraph of type 2 then D is the radial digraph of itself or the radial 

digraph of its complement. They generalized the known characterization for radial graphs. Also they 

characterized self complementary self radial digraphs. 

In [14], Kathiresan et al. defined dynamics of radial graphs. Given a positive integer m, the 
thm  

iterated radial graph of G is defined as )).(()( 1 GRRGR mm   A graph G is periodic if  GGRm )(  for 

some m. If p is the least positive integer with this property, then G is called a fixed graph. A graph G is said to 

be an eventually periodic graph if there exists positive integers m and k >0 such that 

kiGRGR iim  ),()( . They proved that any graph G is periodic if and only if any of the following 

holds. 

1.G is disconnected with each component complete, and ,2iV  for each   

   
thi component. 

2. GGR )(  

      3. G  is a connected radial graph with .)( GGR   

4. G is such that GGR )(  and )()( GRGRm   for some .2m  

Chartrand et al. [6,7] introduced the concept of boundary vertices in graphs. If v is an eccentric vertex 

of a vertex u and w is a neighbor of v, then d(u,w)   d(u,v). A vertex v may have this property, however, 

without being an eccentric vertex of u. A vertex v is a boundary vertex of u if d(u,w)  d(u,v) for all 

).(vNw  It is not necessary that the vertices u and v are boundary vertices to each other. 

                    Motivated by the above works, we introduce a new graph called boundary graph B(G) based on a 

connected graph G.B(G) is a simple graph whose vertex set is V(G) and the two vertices u and v are adjacent in 

B(G)  if either u is a boundary of v or v is a boundary of u. A graph G is called a boundary graph if there exists a 

graph H such that B(H) = G. If G is disconnected, then each vertex in a component is adjacent to all the vertices 

in the other components and is adjacent to all of its boundary vertices within the component. In this paper, we 

denote 21 GG    if the two graphs 1G and 2G  are the same graphs. We define the neighborhood  

}),(/)({)( kwudvNwuNk  .A vertex )(GVv  is called a complete vertex if )(vN  is 

complete. It is clear that every complete vertex is a boundary vertex of all other vertices. Note that we do not 

consider the case .)( GGB   

Let 2423221211 ,,,, FFFFF  and 3F  denote the set of all graphs G such that r(G) = 1 and d(G) = 1; 

r(G) = 1 and d(G) = 2; r(G) = 2 and d(G) = 2; r(G) = 2 and d(G) = 3; r(G) = 2 and d(G) = 4; 3)( Gr  

respectively and 4F denote the set of all disconnected graphs.  

Now we show that the notions of radial graph and boundary graph are independent. It is easy to check 

that for the following graph G r(G) = 2, d(G) = 2, 2)( Gr   and .3)( Gd  By applying Theorem D, G is not 

a radial graph. But G is the boundary graph of H.  

 
The graph G 

 



CHARACTERIZATION OF BOUNDARY GRAPHS 

www.ijlemr.com                                                     11 | Page 

 

 

 
The graph H 

 

Figure 1 

 

                                        

Now we consider the following graph G. 

 
A radial graph but not a boundary graph. 

 

Figure 2 

The fact that G is a radial graph is clear from Theorem A. But this is not a boundary graph of any graph 

on 4 vertices. Now we give an example of a disconnected graph and its boundary graph B(G). 

 
The graph G                         The graph B(G) 

 

Figure 3 

 

2. Boundary graph of some classes of graphs 
This section gives the boundary graph of some classes of graphs. 

 

 Result 2.1.   B(G) = G if and only if G is complete.   

Proof.  Suppose that G is not complete.Then 324232212 FFFFFG  . If 12FG , then either 

12)(  )( FGBorKGB n  .Our assumption shows that 12)( FGB  . But there is at least one pair of non-

adjacent vertices of eccentricity 2 in G. These two vertices are adjacent in B(G). Therefore .)( GGB  If 
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22FG  with at least one complete vertex,  then 12)( FGB  . If 22FG has no complete vertices, then there 

exist at least one pair of non-adjacent vertices u and v of eccentricity 2. This shows that )(GBuv . Thus in  

this case, we obtain .)( GGB  Similar argument can be applied if .32423 FFFG  Conversely, 

assume that G is Complete.For a vertex u in a complete graph G, every vertex v other than u is a boundary 

vertex of u and hence B(G) = G.                                      

       

                      There are non-complete graphs G of order n for which nKGB )( . 

 

Result 2.2.  1,1 )(  nn KKB   for every n. 

 

Result 2.3.  2
2

)( K
n

CB n   if n is even   

                       nn CCB )(  , if n is odd. 

 

                     By observing the Results 2.1 and 2.3, we have the following problem. 

 

Problem1. Characterize all graphs G for which GGB )( . 

 

Result 2.4.  nmnm KKKB )( ,  , .2, nm  

 

The proof of following proposition is obvious. 

 

Proposition 2.5.  Every vertex of G is complete if and only if G is complete. 

 

                               For the graph G given in Figure 4, ,2)(,1)(  GdGr  

,2)()( 21  veve nKGB )( ,  since 21  v andv  are non-adjacent in B(G). 

 

A graph 12FG  for which B(G) is non complete.                                                         

Figure 4 
 

 Theorem 2.6. For a graph 12FG , nKGB )(  if and only if either }{)(}{)( uvNvuN   or 

}{)(}{)( vuNuvN   for any two adjacent vertices u and v of G. 

  

Proof. Suppose that for any two adjacent vertices u and v of G either }{)(}{)( uvNvuN   or 

}{)(}{)( vuNuvN  .If }{)(}{)( uvNvuN  .Then d(v,u) = d(w,v) for all )(uNw . This 

implies that u is a boundary of v. Consider }{)(}{)( vuNuvN  .In the same way , we can prove v is a 

boundary of u. Therefore ).(GBuv This shows that if ),(GEuv then )).(( GBEuv Also any two 

non-adjacent vertices are boundary to each other in G. Hence they are adjacent in B(G). 
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          Suppose that for any two adjacent vertices u and v of G neither }{)(}{)( uvNvuN   nor 

}{)(}{)( vuNuvN  . Then d(v,u) < d(v,w) for some )(uNw  and d(u,v) < d(u,w) for some 

).(vNw Therefore ),(GBuv  which is a contradiction to the fact that nKGB )( . 

 

3. A necessary and sufficient condition for a graph to be a boundary graph 

This section provides a tool that check whether a given graph is a boundary graph or not.Next we give 

a graph 12FG  with no complete vertex and its boundary graph B(G). Note that B(G) is not equal to the 

complement of G. 

   

                  The graph  12FG                                                     The graph GGB )(  

Figure 5 

 

Lemma 3.1.   Let G be a graph. Then GGB )(  if and only if the following conditions hold. 

(i) G has no complete vertex. 

(ii) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two adjacent 

vertices u and v of G. 

(iii) either )(uNk  or )(vNk  for any two non-adjacent vertices u and v of G, where k= 

d(u,v)+1. 

 

Proof.  Assume that GGB )( . Suppose (i) does not hold. Then 12)( FGB  which is a 

contradiction.Suppose (ii) does not hold. Then either }{)(}{)( uvNvuN   or 

}{)(}{)( vuNuvN   for some adjacent vertices u and v of G. If }{)(}{)( uvNvuN  , then 

d(v,u) = d(w,v) for all )(uNw . This shows that u is a boundary of v.  In the same way we can prove v is a 

boundary of u if }{)(}{)( vuNuvN  . Therefore )(GBuv  which is a contradiction to the fact 

that GGB )( .  

Suppose (iii) does not hold. Then neither )(uNk  nor )(vNk  for some non-adjacent vertices 

u and v of G, where k= d(u,v)+1. If )(uNk , then there exists at least one element )(uNw k  such that 

d(u,w) = k. This implies ).,(),( wudvud  Hence v is not a boundary of u. Similarly u is not a boundary of v 

if )(vNk . Therefore ),(GBuv which is a contradiction to the fact that GGB )( . The proof of the 

converse part is obvious.                                                           

 

Lemma 3.2.   Every graph 11FG  is a boundary graph. 

 

 Proof.  The proof follows from Result 2.1. 

 

Lemma 3.3.  If 4FH  , then B(H) is a connected graph. 

 

Proof.  Follows from the definition. 

 

Lemma 3.4.   If G has at least one isolated vertex, then G is not a boundary graph. 

 

Proof.  Let G be a graph with at least one isolated vertex. Suppose that G is a boundary graph. Then there exists 

a graph H such that B(H) = G. By Lemma 3.3. B(H) is  connected which is a contradiction. Therefore G is not a 

boundary graph. 
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Lemma 3.5.    Let 4FG without isolated vertices. If G  has the following properties 

 (i) G  has no complete vertex.  

 (ii) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two  

       adjacent  vertices u and v of .G   

(iii) either )(uNk  or )(vNk  for any two non-adjacent vertices u and v of G ,      

      where k= d (u,v)+1, then G is a boundary graph.   

 

Proof.  By Lemma 3.1, G.)( GB  

 

Theorem 3.6.   A graph G is a boundary graph if and only if it is the boundary graph of its complement G  with 

the following properties  

 

  (i) G  has no complete vertex.  

 (ii) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two  

       adjacent vertices u and v of .G   

 (iii) either )(uNk  or )(vNk  for any two non-adjacent vertices u and v of G ,      

where k= d (u,v)+1.  

  

Proof. Suppose there exists a graph H such that B(H) = G.We have to prove that G is the boundary graph of its 

complement G  with the properties (i), (ii)  and (iii). Suppose not. Then either GH   and H has the properties 

(i),(ii) and (iii) or GH   and one of the property fails. 

Case (i) If  GH   and H has the properties (i),(ii) and (iii), then by Lemma 3.1 .)( HHB   This implies 

GH  . Therefore GH   which is a contradiction.  

Case (ii) If GH   and any one of the property fails. Suppose (i) does not hold for G . Let u be a complete 

vertex in G . Then u is adjacent with all the vertices in  GB . This implies   GGB   which is a 

contradiction. Suppose (ii) does not hold for G , then either }{)(}{)( uvNvuN   or 

}{)(}{)( vuNuvN   for some adjacent vertices u and v of .G  This implies that u and v are adjacent in 

 GB . Hence   GGB   which is a contradiction.Suppose (iii) does not hold for G , then neither 

)(uNk  nor )(vNk  for some non-adjacent vertices u and v of G , where k= d (u,v)+1. Then 

Guv  and  GBuv . This shows that   GGB  . Hence G is not a boundary graph which is a 

contradiction. 

 The proof of the converse part follows from Lemmata 3.1, 3.4, and 3.5. 

  

4.Conclusion 
In this paper we have solved the graph equation B(H) = G for a given graph G. This paper contains an 

interesting open problem that characterize all graphs G for which GGB )( . One can investigate the 

properties of iterations of boundary graphs. For detailed description of dynamics of graph operators, one can 

refer [19].            
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