www.ijlemr.com // REETA-2K16 | PP. 148-157

Power flow methods for loss allocation in radial distribution networks with DG's

N.SUBHASHINI¹, A.HEMA SEKHAR²
¹(ELECTRICAL AND ELECTRONICS ENGINEERING, SVPCET, INDIA)
² (ELECTRICAL AND ELECTRONICS ENGINEERING, SVPCET, INDIA)

ABSTRACT: This paper proposes an LA method that can be applied to radial medium voltage distribution systems with DGs. The method starts by assigning zero power losses to a specific group of nodes. Then, the power loss allocated to other nodes is calculated based on the power loss of the lines connecting the zero assigned nodes and these nodes. Since this method results in over-recovery of total loss, normalization is executed at the end to compensate. The method is simple and is based on the results of power flow.

I. INTRODUCTION

The increase in deployment of distributed generation (DG) and the shift of distribution loads from customer mode to pro-summers have altered distribution systems from passive to active mode. As a result, some of the transmission networks issues have been generalized to distribution systems as well. One of these issues is loss allocation (LA), which specifies the fraction of total distribution loss that each load or DG is responsible for. Although there are many transmission LA methods in the literature, distribution LA is still a new topic and most of the distribution system operators still do not have a standard policy.

Most of the methods implemented for distribution LA, have been mainly proposed This paper proposes an LOSS ALLOCATION method that can be applied to radial medium voltage distribution systems with DGs. The method starts by assigning zero power losses to a specific group of nodes. Then the power loss allocated to other nodes is calculated based on the power loss of the lines connecting the zero assigned nodes and these nodes. Since this method results in over-recovery of total loss, normalization is executed at the end to compensate. The method is simple and is based on results on the results of power flow. This paper organized as follows: the next section explains the bases of the method, which is proceeded by the formulation of the method presented in section 5.in section 6, the proposed method and five other methods are applied to a rural distribution feeder in order to compare the results. Finally the last section presents the concluding remarks.

II.HEADING S

I. PROPOSED METHOD

A. Calculating the Loss Allocated to the Loads

B.Calculating the Loss Allocated to the DGs

II. MATLAB Results

III.INDENTATIONS AND EQUATIONS

I. PROPOSED METHOD

The distribution loss allocated to the node connecting the distribution and transmission network is set to zero.

Consider the node depicted in Fig.1 In case $(P_{G1}+P_{G2}+.....) > (P_{D1}+P_{D2}+....)$, the proposed method to all loads connected to this node, since it means that the loads are locally fed allocates zero losses by the DGs and, hence, do not result in any power loss.

In case $(P_{G1}+P_{G2}+....) < (P_{D1}+P_{D2}+....)$, the method allocates zero losses to the DGs connected to the node.

- The proposed method does not allocate negative losses to the loads and DGs.
- The distribution system is assumed to be a radial system, in which the loads and DGs have private
- Consider the circuit depicted in Fig.5 which shows two nodes of a system. The power loss of the line

connecting nodes 1 and 2 can be written as
$$P_{LOSS_{1,2}} = r_{1,2} \frac{P_{1,2}^2 + Q_{1,2}^2}{|V_1|^2} = k(P_{1,2}^2 + Q_{1,2}^2) \qquad -(1)$$

Where $r_{1,2}$ is the resistance of the line; $P_{1,2}$ and $Q_{1,2}$ are the active and Reactive power through the line; and V_1 is the voltage of node 1. As it is seen $P_{Loss1,2}$ is Composed of two terms. The first term, which is $kP^2_{1,2}$, is due to the active flows through the line and the second term, which is $kQ^2_{1,2}$, is due to the reactive flows. Let us denote these two terms, respectively, as $P^{p}_{Loss1,2}$ and $P^{q}_{Loss1,2}$. Consequently, (1) can be written as

www.ijlemr.com // REETA-2K16 || PP. 148-157

$$\begin{split} P_{LOSS_{1,2} = P_{LOSS_{1,2}}^p} + P_{LOSS_{1,2}}^q - (2) \\ As \ P_{1,2} &= P_{D21} + P_{D22} + P_{LOSS_{1,2}}, P_{LOSS_{1,2}}^p can be written as \\ P_{LOSS_{1,2}}^p &= k P_{1,2}^2 = k \left(P_{D21} + P_{D22} + P_{LOSS_{1,2}} \right)^2 - (3) \end{split}$$

Which is hence, can be ignored. Based on the Shapley value, which is for calculating the contribution of a player in a game played by a number of players, the contribution of load P_{D21} in P^p_{Loss1,2} is equal to $k(P_{D21}+P_{D22})^2$, since $P_{Loss1,2}$ is usually small compared to P_{D21} and P_{D22} and, to

$$k(P_{D21}^2 + P_{D21}P_{D22}) - (4)$$

And that of load P_{D22} is k $(P^2_{D22} + P_{D21}P_{D22})$. A similar formulation can be derived case the number of loads or lines connected to node 2 increases. Moreover, the same approach is applicable if we want to allocate $P^q_{Loss1,2}$ to Q_{D21} and Q_{D22} . These formulae are the basis for the proposed LA method, which is presented in the following section.

A. Calculating the Loss Allocated to the Loads

1) Loss Allocated to Loads Due to Active Flows:

In this step, first the loss assigned to any of the nodes due to active flows is calculated and then distributed between the loads connected to it.

The procedure is based on the fact that the loss assigned to node k is dependent on the loss assigned to all nodes that are adjacent to this node and send active power to it. Let branch b n,k connect node n to node k and Ps n,k, which is the active power flow at sending node n of this branch, be positive. Presume that the loss allocated to node n due to active flows is denoted as L p and is known. We want to distribute among: 1) all the loads that are connected to node n and 2) the branches connected to this node whose active power flow from this node is positive. Based on the Shapley value method results given in (4), the contribution of $P_{n,k}^{s}$ in $L_{n,k}^{p}$ is proportional to

$$\left\{ \left(P_{n,k}^{s} \right)^{2} + P_{n,k}^{s} \left(\sum_{\substack{m \in A_{n+1} \\ m \neq k}} P_{n,m}^{s} + \sum_{D_{m} \in D_{n}} P_{D_{m}} \right) \right\} - (5)$$

 $\left\{ \left(P_{n,k}^{s}\right)^{2} + P_{n,k}^{s} \left(\sum_{\substack{m \in A_{n+1} \\ m \neq k}} P_{n,m}^{s} + \sum_{D_{m} \in D_{n}} P_{D_{m}} \right) \right\} - (5)$ Where $P_{n,m}^{s}$ is the active power flow at the sending point of branch $b_{n,m}$, which is a positive value; $P_{D,m}$ is the active power demand of load D_m;A_{n+1} is the set of nodes receiving active power from node n and connected to this node with branch $b_{n,m}$ and D_n is the set of loads connected to node n.

Since the contribution of all loads and active power sending branches connected to node n should add up to L^{p}_{n} , the following term is assigned to $P^{s}_{n,k}$:

L^p_{n,k}
$$\frac{\left(P_{n,k}^s\right)^2 + P_{n,k}^s \left(\sum_{m \square A_{n+1}} P_{n,m}^s + \sum_{D_m \square D_n} P_{Dm}\right)}{\left(\sum_{m \square A_{n+1}} P_{n,m}^s + \sum_{D_m \square D_n} P_{Dm}\right)^2} - (6)$$

Node k is not only responsible for a fraction of the loss assigned to node n, but also the power loss of branch b n,k due to active power flows. As a result, L p k can be calculated as shown in (7), at the bottom of the next page, where A_{k-1} is the set of nodes that send active power to node k and are connected to this node with branch $b_{n,k}$; and $P_{Loss\,n,k}^p$ is the power loss of branch $b_{n,k}$ due to active power flows. As (7) shows, a fraction of the loss assigned to node n is assigned to node k.

In this step, the loss assigned to the active source nodes, that is, the nodes whose active generation is greater than their active load, is considered to be zero, since all of the loads connected to these nodes are supplied locally by the DGs connected to these nodes. While the node connecting the transmission and distribution systems should not be allocated any loss, the loss assigned to this node is set to zero, as well. Based on (7), the procedure to calculate L_k^p 's is as follows.

Step 1) Assign zero L p k to each of the active source nodes, as well as the connection Node of the transmission and distribution systems.

Step 2)Loop over all nodes whose L p k is not obtained yet. If the loss assigned to all the nodes sending active power to this node was previously calculated, then obtain the loss assigned to this node using (7).

Step3) If there is a node whose L p_k is not obtained yet, go back to Step 2); otherwise, stop the procedure.

For the proof of why L p_k can be determined for all nodes using the proposed method, imagine node n₁ is a node, whose L p k cannot be determined. This should be due to the impossibility of determining the loss due to active flows allocated to one, or some, of its adjacent nodes, that send(s) active power to node n₁, say node n₂ . Likewise, the impossibility of determining the loss due to active flows allocated to node n₂ should be because the loss due to active flows allocated to node n₃, which is adjacent to n₂, cannot be calculated, as shown in Fig. 3. Since the system is assumed to be radial and the number of nodes is finite, there would be a node, say n_n, that either does not receive active power from any other node or is the connection between the distribution and

www.ijlemr.com || REETA-2K16 || PP. 148-157

transmission systems. Thus, the loss allocated to node n_n due to active flows should be zero, which contradicts the fact that it is impossible to determine the loss allocated to node n_3,n_2 , and n_1 . As a result, the proposed method can always calculate L $_k^p$ for all nodes.

The same explanation can be used to demonstrate that it is always possible to calculate L^{q}_{k} , $L^{'p}_{k}$ and $L^{'q}_{k}$ for all nodes, which are later introduced.

Furthermore, note that L $^p{}_k$ is not the actual loss allocated to node k, rather it is the loss assigned to this node for calculating the loss allocated to the loads (and not the DGs) connected to this node. This fact will become more clear, when we define L $^{'p}{}_k$ in the following step, which is used to calculate the loss allocated to the DGs connected to node k. Similar to (6), the loss allocated to load D_i connected to node k, which has the active power demand of P_{Di} , is calculated as

$$L_{k}^{p} = \sum_{n \square A_{k-1}} \left[L_{n}^{p} \frac{\left(P_{n,k}^{s}\right)^{2} + P_{n,k}^{s} \left(\sum_{\substack{m \square A_{n+1} \\ m \neq k}} P_{n,m}^{s} + \sum_{D_{m} \square D_{n}} P_{D_{m}}\right)}{\left(\sum_{\substack{m \square A_{n+1} \\ p_{n,m}}} P_{n,m}^{s} + \sum_{D_{m} \square D_{n}} P_{D_{m}}\right)^{2}} + P_{\text{Loss}_{n,k}}^{p} \right] - (7)$$

$$L_{Di}^{p} = L_{k}^{p} \frac{(P_{Di})^{2} + P_{Di} \left(\sum_{D_{n} \square D_{k}} P_{Dn} + \sum_{n \square A_{n+1}} P_{k,n}^{s} \right)}{\left(\sum_{D_{n} \square D_{k}} P_{Dn} + \sum_{n \square A_{k+1}} P_{k,n}^{s} \right)^{2}} - (8) \text{ Where D }_{k} \text{ is the set of loads connected to node k}$$

Similar to (7), shown at the bottom of the page, (8) is based on the fact that the loss assigned to a node should be distributed between all of the loads that are connected to it and the nodes receiving active power from it. As (8) shows, L $_{Di}^{p}$ is dependent on L $_{k}^{p}$, which has term $P_{Loss\,n\,,k}^{p}$ in it. As a result, the loss allocated to the loads is based on the power loss of the lines from which the loads are fed. Hence, the loss allocated to the loads connected to heavily loaded feeders will be greater, compared to the ones attached to lightly loaded feeders. This ensures that the LA results are fair and equitable.

Imagine the distribution system shown in Fig.4. The following equations show how the loss allocated to the loads of this system are calculated First, the loss assigned to the slack node is set to zero ($L^p_0=0$) Since node 2 is a source node, the loss assigned to this node is zero as well ($L^p_2=0$).

Now using (7), the loss assigned to nodes 1, 3, and 4 is calculated as

$$\begin{split} L_{1}^{p} &= P_{\text{LOSS }_{0,1}}^{p} + P_{\text{LOSS }_{2,1}}^{p}, \\ L_{3}^{p} &= P_{\text{LOSS }_{2,3}}^{p}, \\ L_{4}^{p} &= L_{1}^{p} + P_{\text{LOSS }_{1,4}}^{p} - (9) \end{split}$$

After finding the loss assigned to the nodes due to active flows, the loss allocated to the loads can be obtained by using (8) as

$$L_{D1}^{p} = 0$$
, $L_{D2}^{p} = 0$, $L_{D3}^{p} = L_{3}^{p}$, $L_{D4}^{p} = L_{4}^{p}$. - (10)

1) Loss Allocated to Loads Due to Reactive Flows:

After calculating the loss allocated to the loads due to active Flows the loss allocated to them due to reactive flows is calculated.

The procedure to do this is very similar to the previous section. First, the reactive source nodes, that is, the nodes whose reactive generation is more than their reactive load, are assigned zero reactive losses. Then, is calculated as shown in (11) at the bottom of the page,

Where R_{k-1} Set of nodes that send reactive power to node k and are connected to this Node with Branch $b_{n,k}$; $Q^s_{n,k}$ Reactive power flow at the sending point of branch $b_{n,m}$, which is a Positive value; $Q^s_{n,m}$ Power loss of branch $b_{n,k}$ due to reactive flows; R_{n+1} Set of nodes receiving reactive power from node n and connected to this Node n and connected to this node with branch $b_{n,m}$; D_n Set of loads connected to node n; Q_{Dm} Reactive power demand of load D_m ; L^q_n Loss allocated to node n due to reactive flows. Similar to the previous section, the procedure could be applied to calculate the loss assigned to all nodes due to reactive flows. As a result, the loss allocated to load D_i is calculated similar to (8) as

$$L_{k}^{q} = \sum_{n \square R_{k-1}} \left[L_{n}^{q} \frac{\left(Q_{n,k}^{s}\right)^{2} + Q_{n,k}^{s} \left(\sum_{\substack{m \square R_{n+1} \ Q_{n,m}^{s} + \sum_{D_{m} \square D_{n}} Q_{D_{m}}\right)}}{\left(\sum_{\substack{m \square R_{n+1} \ Q_{n,m}^{s} + \sum_{D_{m} \square D_{n}} Q_{D_{m}}\right)^{2}}} + P_{LOSS_{n,k}}^{q} \right] - (11)$$

www.ijlemr.com || REETA-2K16 || PP. 148-157

$$L_{D_{i}}^{q} = L_{k}^{q} \frac{\left(Q_{D_{i}}\right)^{2} + Q_{D_{i}}\left(\sum_{\substack{D_{n} \square D_{k} \\ n \neq i}} Q_{D_{n}} + \sum_{\substack{n \square R_{k+1} \\ n \neq i}} Q_{k,n}^{s}\right)}{\left(\sum_{\substack{D_{n} \square D_{k} \\ Q_{D_{n}} + \sum_{\substack{n \square R_{k+1} \\ Q_{k,n}^{s}}}} Q_{k,n}^{s}\right)^{2}} - (12)$$

2) Total Loss Allocated to Loads:

The total loss allocated to load D_i is obtained by adding (8) and (12) as

$$L_{D_i} = L_{D_i}^p + L_{D_i}^q - (13)$$

Calculating the Loss Allocated to the DGs

Likewise, in order to calculate the loss allocated to DG G i, which is connected to node k, first L' $_k$ is obtained. L' $_k$ is the loss assigned to node k, which is calculated using the loss allocated to all nodes that receive active power from this node. L' $_k$ is composed of L' $_k$ and L' $_k$, whose formulations are presented in the following sections.

1) Loss Allocated to the DGs Due to Active Flows:

The loss allocated to node k due to active flows is calculated as shown in (14), at the bottom of the page, where A_{k+1} Set of nodes receiving active power from node k and are connected to this Node With branch $b_{k,n}$; $P^r_{k,n}$ Active power flow at the receiving point of branch $b_{k,n}$, which is a positive Value; $P^r_{m,n}$ Active power flow at the receiving point of branch $b_{m,n}$, which is a positive Value; $P^p_{lossk,n}$ Loss of branch $b_{k,n}$ due to active flows; A_{n-1} Set of nodes sending active power to node n and connected to this node With branch $b_{m,n}$; G_n Set of DG's connected to node n; P_{Gm} Active power output of DG G_m ; $L'_n{}^p$ Loss allocated to node n due to active flows. $L'_k{}^p$ is set to zero for all of the active sink nodes, that is, the nodes whose active load is more than their active generation. This is because the active generated power of all DGs connected to these nodes is consumed locally by the loads connected to

$$L_{k}^{'p} = \sum_{n \square A_{k+1}} \left[L_{n}^{'p} \frac{\left(P_{k,n}^{r}\right)^{2} + P_{k,n}^{r} \left(\sum_{m \square A_{n-1}} P_{m,n}^{r} + \sum_{G_{m} \square G_{n}} P_{G_{m}}\right)}{\left(\sum_{m \square A_{n-1}} P_{m,n}^{r} + \sum_{G_{m} \square G_{n}} P_{G_{m}}\right)^{2}} + P_{LOSS|k,n}^{p} \right] - (14)$$

These nodes .Consequently, the DGs connected to these nodes should not be allocated any active loss. The procedure to calculate L_k^p s is as follows.

Step 1) Assign zero L_k^p to each of the active sink nodes, as well as the node Connecting the transmission and distribution systems.

Step 2) Loop over all the nodes whose L_k^p is not obtained yet: If L_k^p of all nodes that receive active power from this node is previously Calculated, then obtain L_k^p for this node using (14).

Step 3)If there is a node whose L' _k p is not obtained yet, go back to Step 2); otherwise, stop the procedure.

A similar proof to the one previously explained could demonstrate that this method can calculate L' _k ^p for all nodes

Assume DG G $_j$ with power output of P $_{Gj}$ is connected to node k. The loss allocated to this DG, due to active flows, can be calculated using L $_k^2$ as

$$L_{G_{j}}^{p} = L_{k}^{'p} \frac{\left(P_{G_{j}}\right)^{2} + P_{G_{j}} \left(\sum_{G_{n} \square G_{k}} P_{G_{n}} + \sum_{n \square A_{k-1}} P_{n,k}^{r}\right)}{\left(\sum_{G_{n} \square G_{k}} P_{G_{n}} + \sum_{n \square A_{k-1}} P_{n,k}^{r}\right)^{2}} - (15)$$

Where G_k represents the set of DGs connected to node k

2) Loss Allocated to the DGs Due to Reactive Flows:

The loss allocated to node k due to reactive flows is calculated as (16), shown at the bottom of the page, where R_{k+1} Set of nodes receiving reactive power from node k and are connected to This node with branch $b_{k,n}$; $Q^r_{k,n}$ Reactive power flow at the receiving point of branch $b_{k,n}$ which is a Positive value; $Q^r_{m,n}$ Reactive power flow at the receiving point of branch $b_{m,n}$ which is a Positive value $P^q_{lossk,n}$ Power loss of branch $b_{k,n}$ due to reactive flows; R_{n-1} Set of nodes sending reactive power to node n and connected to this node With branch $b_{m,n}$;

 Q_{6m} Reactive power output of DG G_m ; L'_n Loss allocated to node n, due to reactive flows.

$$L_{k}^{'q} = \sum_{n \in R_{k+1}} \left[L_{n}^{'q} \frac{(Q_{k,n}^{r})^{2} + Q_{k,n}^{r} \left(\sum_{\substack{m \in R_{n-1} \ Q_{m,n}^{r} + \sum G_{m} \in G_{n} \ QG_{m}} \right)}{\left(\sum_{m \in R_{n-1}} Q_{m,n}^{r} + \sum G_{m} \in G_{n} \ QG_{m} \right)^{2}} + P_{LOSS_{k,n}}^{q} \right] - (16)$$

The loss allocated to DG Gi due to reactive flows might be obtained as

www.ijlemr.com // REETA-2K16 | PP. 148-157

$$L_{G_{j}}^{q} = L_{k}^{'} \frac{\left(Q_{G_{j}}\right)^{2} + Q_{G_{j}}\left(\sum_{G_{n} \square G_{k}} Q_{G_{n}} + \sum_{n \square R_{k-1}} Q_{n,k}^{r}\right)}{\left(\sum_{G_{n} \square G_{k}} Q_{G_{n}} + \sum_{n \square R_{k-1}} Q_{n,k}^{r}\right)^{2}} - (17)$$

1) Total Loss Allocated to DGs:

The total loss allocated to DG G; is obtained by adding (15) and (17) as

$$L_{G_i} = L_{G_i}^p + L_{G_i}^q$$
 - (18)

Normalization for Calculating the Final LA Formula

In this step, normalization is executed, so that the total amount of money paid by loads and DGs is equal to the total loss cost. The normalization factor is obtained as

$$NF = \frac{P_{LOSS}}{\sum L_{D_i} + \sum L_{G_i}} - (19)$$

$$L_{D_i}^{normalized} = L_{D_i} NF$$

 $L_{G_i}^{normalized} = L_{G_i} NF - (20)$

total loss cost. The normalization factor is obtained as $NF = \frac{P_{LOSS}}{\sum L_{D_1} + \sum L_{G_j}} - (19)$ Hence, the loss allocated to load D_i and the loss allocated to DG G_j is normalized as $L_{D_i}^{normalized} = L_{D_i}NF$ $L_{G_j}^{normalized} = L_{G_j}NF - (20)$ Equation (20) is the final formulation for calculating the loss allocated to load D_i and DG G_j To summarize, the stars of the proposed LA method are desirted in Fig. 5. As the figure shows calculating the loss allocated to steps of the proposed LA method are depicted in Fig. 5 As the figure shows, calculating the loss allocated to loads is executed parallel to calculating the loss allocated to DGs, which considerably decreases the computation time for large systems

MATLAB Results

In this section, the proposed LA method is implemented on a sample rural distribution system (line &bus data can be taken from IEEE 16-bus and 69-bus radial distribution system), whose single-line diagram is shown in Fig. 6. This system comprises 17 nodes, 12 loads, 3 DGs, and 16 distribution lines. Table I presents the power-flow results as well as the distribution lines' resistance (r), reactance (x), and total charging capacitance (b), taking 1 MVA and 20 kV as the base power and voltage. Node 1 is fed by a 63/20-kV transformer. Nonzero shunt parameter of lines makes it possible to use the Z-bus LA method, since the Y-bus matrix is not singular in this case. The loads' and DGs' data and the results of the proposed LA method as well as pro rata, marginal, Z-bus, BCDM and succinct method are provided in Table 2. As Table 2 shows, three DGs are located at nodes 15–17. The DGs are considered as negative loads for power-flow calculations.

The proposed method has been applied to a larger system comprising 69 nodes, whose data can be found in except the loads and DGs output power, which are given in Table 3.The results of applying the proposed method to this system are shown in Table 3 as well.

IV. FIGURES AND TABLES

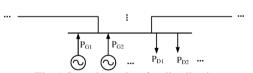
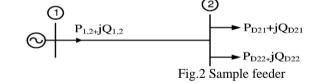



Fig.1 Sample node of a distribution system.

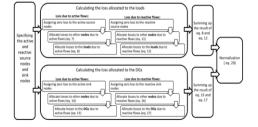


Fig3 Steps of the proposed LA method

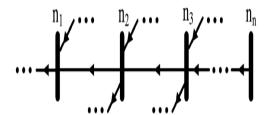


Fig.4 Part of a sample distribution feeder.

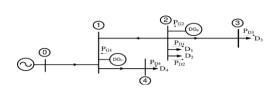


Fig. 5 Sample distribution feeder

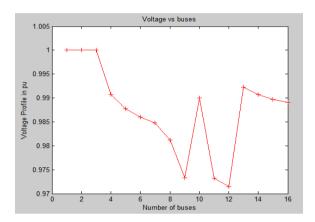


Fig7. Voltage Profile for 16-bus system

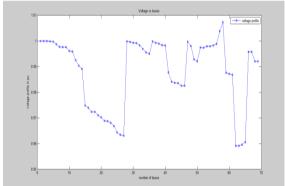


Fig.9 Source node Voltage profile of 69-bus distributed system

Fig . 6. Test distribution feeder.

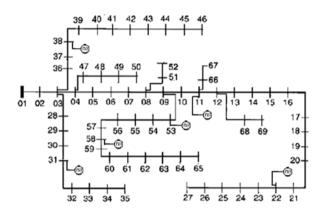


Fig.8 69-bus diagram with DGs

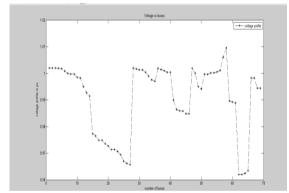


Fig.10 Sink node Voltage profile of 69-bus distributed system

TABLE-I Distribution Lines Data

Branch No.	From Node	To Node	R (p.u)	X (p. u)	Pl (KW)	Q1 (KVAR)
1	1	2	0.0025	0.0026	0	0
2	2	5	0.0007	0.0007	140.0000	80.0000
3	2	3	0.0008	0.0008	89.0000	50.0000
4	3	4	0.0007	0.0007	111.0000	63.0000
5	5	9	0.0021	0.0022	89.0000	50.0000

ISSN: 2455-4847

www.ijlemr.com || REETA-2K16 || PP. 148-157

6	5	6	0.002	0.0021	0	0
7	6	10	0.0001	0.0001	0	0
8	6	7	0.0009	0.0009	141.0000	80.0000
9	7	8	0.0017	0.0017	338.0000	192.0000
10	10	11	0.0006	0.0006	152.0000	86.0000
11	10	12	0.0018	0.0018	266.0000	151.0000
12	12	13	0.0003	0.0003	10.0000	5.0000
13	12	14	0.0011	0.0011	0	0
14	14	15	0.0011	0.0011	205.0000	116.0000
15	14	17	0.0007	0.0007	72.0000	41.0000
16	15	16	0.0001	0.0001	241.0000	137.0000

TABLE- 2 Load and DG data and LA results: Sink node

	Load and DG data and LA Tesuits. Sink node							
Load	P	Q	L	ı KW				
Node	(KW)	(KVAR)	Z-bus	BCDM	PROPOSED			
no.			Method		Method			
3	89.0000	50.0000	0.220000	0.330000	0.090000			
4	111.0000	63.0000	0.290000	0.430000	0.180000			
5	140.0000	80.0000	0.430000	0.620000	0.260000			
7	141.0000	80.0000	0.780000	0.960000	0.860000			
8	338.0000	192.0000	2.120000	2.560000	3.390000			
9	89.00000	50.0000	0.300000	0.410000	0.160000			
11	152.0000	86.0000	0.770000	0.970000	1.230000			
12	266.0000	151.0000	1.360000	1.700000	0.390000			
13	10.0000	5.0000	0.050000	0.060000	0.010000			
15	205.0000	116.0000	-	1.050000	0.000000			
			0.250000					
16	72.0000	41.0000	-	0.390000	0.000000			
			0.090000					
17	241.0000	137.0000	-	0.720000	0.000000			
			0.510000					

TABLE II Load and DG data and LA Results: Source node

Loud and DG data and Lil Regards Boarce node							
Generation	P	Q	Z-bus	BCDM	PROPOSED		
Node no.	(KW)	(KVAR)	Method		Method		
15	300.0000	145.290000	0.360000	-1.530	0.030000		
16	200.0000	96.860000	0.240000	-1.080	0.020000		

ISSN: 2455-4847

www.ijlemr.com || REETA-2K16 || PP. 148-157

17	260.0000	125.920000	0.550000	3.400	0.000000

TABLE- III LA results for the 69- node system-Sink node

Load	P	Q	LA in KW	LA in
Node	(KW)	(KVAR)	(Light	KW
no.	(2211)	(11 / 1111)	loads)	(Over
				loads)
6	20.60000	12.20000	0.050000	0.09
7	40.40000	30.00000	0.270000	0.35
8	75.0000	54.0000	0.970000	1.60
9	30.0000	22.0000	0.690000	1.35
10	28.0000	19.0000	1.200000	1.78
11	145.0000	104.0000	0.000000	0.23
12	145.0000	104.0000	0.330000	0.698
13	81.0000	52.0000	0.470000	0.98
14	93.0000	72.0000	1.210000	1.84
15	71.0000	52.0000	1.650000	2.36
16	5.50000	2.0000	0.190000	0.25
17	21.0000	15.0000	1.630000	1.98
18	14.0000	10.40000	2.060000	2.85
20	1.0000	0.60000	0.530000	1.0
22	56.0000	31.50000	0.000000	0.02
23	64.0000	52.50000	0.010000	0.06
24	28.0000	20.0000	0.010000	0.18
25	33.30000	23.40000	0.040000	0.21
26	44.0000	30.0000	0.100000	0
27	44.0000	30.0000	0.140000	0
28	26.0000	18.60000	0.000000	0
29	26.0000	180000	0.010000	0.02
30	20.30000	12.70000	0.020000	0.04
31	35.0000	33.0000	0.000000	0.0
32	65.0000	52.0000	0.020000	0.30
33	75.0000	51.0000	0.080000	0.14
34	31.0000	24.50000	0.060000	0.10
35	31.0000	24.0000	0.090000	0.14
36	26.0000	18.550000	0.010000	0.02
37	26.0000	18.5500	0.000000	0.1
38	35.6000	22.4000	0.000000	0
39	105.000	87.0000	0.010000	0.04
40	93.0000	72.0000	0.010000	0.05
41	139.220	96.3000	0.190000	0.19
42	71.0000	66.0000	0.180000	0.18
43	25.0000	13.3000	0.080000	0.15
44	54.0000	43.7000	0.350000	0.38
45	39.0000	26.0000	0.330000	0.65
46	1.20000	1.00000 43.5000	0.010000	0.09
47	51.0000 79.0000		0.030000	0.1
48		56.4000 174.500	0.110000	
50	284.700 284.700	174.500	0.930000 1.370000	1.25 1.65
51	40.5000	28.3000	0.570000	1.05
J1	40.3000	20.3000	0.570000	1.2

www.ijlemr.com || REETA-2K16 || PP. 148-157

52	26,6000	12.7000	0.410000	0.8
53	87.3500	63.5000	0.000000	0
54	96.4000	79.0000	0.030000	0.09
55	24.0000	17.2000	0.010000	0.01
56	125.000	85.9000	0.160000	0.19
57	100.000	72.0000	0.130000	0.25
58	12.0000	7.50000	0.000000	0
59	29.5000	20.0000	0.010000	0.32
60	51.9700	43.2000	0.060000	0.45
61	44.0000	28.0000	0.100000	0.18
62	32.0000	23.0000	0.120000	3.5
63	13.6000	9.70000	0.090000	0.84
64	27.0000	12.0000	0.300000	1.23
65	59.0000	42.0000	1.160000	2.044
66	18.0000	13.0000	0.000000	0
67	18.0000	13.0000	0.000000	0
68	28.0000	20.0000	0.070000	0.25
69	28.0000	20.0000	0.100000	0.56

TABLE-IV
LA results for the 69-node system: Source node

L'i results for the 07-hode system. Source hode							
Generation	P	Q	LA in KW	LA in KW			
Node no.	(KW)	(KVAR)	(Light	(Over			
			loads)	loads)			
11	500.0000	220.0000	0.770000	1.520000			
22	100.0000	44.0000	0.010000	0.950000			
31	200.0000	88.0000	0.050000	0.360000			
38	1000.0000	440.0000	0.100000	0.530000			
53	300.0000	132.0000	0.050000	0.230000			
58	400.0000	176.0000	0.130000	0.492000			
l		ı	1				

CONCLUSION

This paper presents a novel LA method for radial distribution systems, in which the loss allocated to each node is dependent on the loss allocated to its adjacent nodes and the loss of the lines connected to the node. The proposed method has the following properties, which are explained in to be the desirable properties of every LA method: This paper has discussed the optimal placement of DG's in 16 & 69-bus RDS system considering the dynamic loaded conditions or load levels and provided the considerable improvement of voltage profile and the reduction of real and reactive power losses in the system by using Loss Allocation method the comparison between the obtained results were done. The placement of DG's in the weak buses has produced the considerable improvement in the annual cost savings of the 69-bus RDSSystem. Future works will focus on studying the effect of harmonics in the 69-bus RDS In order to allocate energy losses throughout a day, the method must be executed separately for each hour, which is time-consuming. Hence, the authors are working on

ISSN: 2455-4847

www.ijlemr.com || REETA-2K16 || PP. 148-157

a stochastic method, which could find equivalent loads based on their variation during a particular time span with an equal energy loss effect to replace the value of loads.

REFERENCES

- [1]. P. M. Sotkiewicz and J. M. Vignolo, "Nodal pricing for distribution networks: Efficient pricing for efficiency enhancing DG," IEEE Trans. Power Syst., vol. 21, no. 2, pp.1013–1014, May 2006.
- [2]. M. Ilic, F. Galiana, and L. Fink, Power Systems Restructuring: Engineering and Economics. Norwell, MA: Kluwer, 1998.
- [3]. J.Mutale, G. Strbac, S. Curcic, and N. Jenkins, "Allocation of losses in distribution systems with embedded generation," in Proc. Inst. Elect. Eng., Gen., Transm. Distrib., Jan. 2000, vol. 147, no. 1, pp. 7–14.
- [4]. E. Carpaneto, G. Chicco, and J. S. Akilimali, "Loss partitioning and loss allocation in three-phase radial distribution systems with distributed generation," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1039–1049, Aug. 2008.
- [5]. E. Carpaneto, G. Chicco, and J. S. Akilimali, "Computational aspects of the marginal loss allocation methods for distribution systems with distributed generation," in Proc. IEEE Melecon, Benalmádena (Málaga), Spain, 2006, pp. 1028–1031.
- [6]. M. Atanasovski and R. Taleski, "Power summation method for loss allocation in radial distribution networks with DG," IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2491–2499, Nov. 2011.
- [7]. A. J. Conejo, F. D. Galiana, and I. Kochar, "Z-bus loss allocation," IEEE Trans. Power Syst., vol. 16, no. 1, pp. 105–110, Feb. 2001.
- [8]. E. Carpaneto, G. Chicco, and J. S. Akilimali, "Branch current decomposition method for loss allocation in radial distribution systems with distributed generation," IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1170–1179, Aug. 2006.